Skip to main content
Log in

Functional relationship among TATA sequences, gene induction and transcription initiation in the β-galactosidase, LAC4, gene from Kluyveromyces lactis

  • Original articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

In the 5′ non-coding region of the β-galactosidase, LAC4, gene of Kluyveromyces lactis, three TATA-like sequences are present at −230, −170 and −142 from the ATG translation start site. By means of deletion mutations in the TATA region, at least two of these TATA sequences, those at −230 and −142, were shown to be required for normal gene expression. Evidence is presented for a functional hierarchy and cooperation between these TATA sequences. The deletion or a change in the position of the TATA sequences affects both β-galactosidase induction and the location of RNA initiation sites. The TATA sequence at −230 alone is sufficient for correct gene induction when it is moved to a position 41 by from the major RNA initiation sites located around −110; the −142 TATA alone contributes only partly to gene induction. We suggest a functional distinction between these two related regulatory sequences. This functional distinction might be established by sequence differences and/or targets of unlike specific DNA binding protein(s). A conformational analysis of the LAC4 promoter showed that under torsional stress the functional elements UAS, TATA boxes RNA initiation sites and ATG can be detected as Pl-sensitive sites. Possible functions of DNA structural alterations on gene expression are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almer AH, Rudolph H, Hinnen A, Hoerz W (1986) EMBO J 5:2689–2696

    Google Scholar 

  • Breunig KD, Kuger P (1987) Mot Cell Biol. 7:4400–4406

    Google Scholar 

  • Breunig KD, Mackedonski V, Hollenberg CP (1982) Gene 20:l-10

    Google Scholar 

  • Breunig KD, Dahlems U, Das S, Hollenberg CP (1984) Nucleic Acids Res 12:2327–2341

    Google Scholar 

  • Buratowski S, Hahn S, Sharp PA, Guarente L (1988) Nature 334:3742

    Google Scholar 

  • Camilloni G, Della Seta F, Negri R, Di Mauro E (1986a) J Biol Chem 261:6145–6148

    Google Scholar 

  • Camilloni G, Della Seta F, Negri R, Ficca AG, Di Mauro E (1986b) EMBO J 5:763–771

    Google Scholar 

  • Camilloni G, Della Seta F, Ficca AG, Di Mauro E (1986c) Mot Gen Genet 204:249–257

    Google Scholar 

  • Cavallini B, Huet J, Plassat JL, Sentenac A, Egly JM, Chambon P (1988) Nature 334:77–80

    Google Scholar 

  • Das S, Hollenberg CP (1982) Curr Genet 6:123–128

    Google Scholar 

  • Das S, Breunig KD, Hollenberg CP (1985) EMBO J 4:793–798

    Google Scholar 

  • Dickson RC, Markin JS (1980) J Bacteriol 142:777–785

    Google Scholar 

  • Giniger E, Varnum SM, Ptashne M (1985) Cell 40:767–774

    Google Scholar 

  • Guarente L, Mason T (1983) Cell 32:1279–1286

    Google Scholar 

  • Hahn S, Hoar ET, Guarente L (1985) Proc Natl Acad Sci USA 82:8562–8566

    Google Scholar 

  • Healy AM, Halser TL, Zitomer RS (1987) Mot Cell Biol 7:3785–3791

    Google Scholar 

  • Johnston A, Salmeron JM Jr, Dincher SS (1987) Cell 50:143–146

    Google Scholar 

  • Kim S, Mellor J, Kingsman AJ, Kingsman SM (1986) Mol Cell Biol 6:4251–4258

    Google Scholar 

  • Klebe RJ, Harris JV, Smart ZD, Douglas MG (1983) Gene 25:333–341

    Google Scholar 

  • Leonardo JM, Bhairi SM, Dickson RC (1987) Mot Cell Biol. 7:4369–4376

    Google Scholar 

  • Lohr D (1984) Nucleic Acids Res 12:8457–8474

    Google Scholar 

  • Lowry OH, Farr NJ, Randall RJ (1951) J Biol Chem 193:265–275

    Google Scholar 

  • McNeil JB, Smith M (1986) J Mot Biol 187:363–378

    Google Scholar 

  • Nagawa F, Fink GR (1985) Proc Natl Acad Sci USA 82:8557–8561

    Google Scholar 

  • Nakao J, Miyanohara A, Toh-E A, Matsubara K (1986) Mot Cell Biol 6:2613–2623

    Google Scholar 

  • Ptashne M (1986) Nature 322:697–701

    Google Scholar 

  • Rudolph H, Hinnen A (1987) Proc Natl Acad Sci USA 84:1340–1344

    Google Scholar 

  • Ruzzi M, Breunig KD, Ficca AG, Hollenberg CP (1987) Mot Cell Biol 7:991–997

    Google Scholar 

  • Schon E, Evans T, Walsh J, Efstratiadis A (1983) Cell 35:837–848

    Google Scholar 

  • Selleck SB, Majors J (1987a) Nature 325:173–177

    Google Scholar 

  • Selleck SB, Majors J (1987b) Mol Cell Biol 7:3260–3267

    Google Scholar 

  • Shore D, Baldwin RL (1983) J Mol Biol 170:983–1007

    Google Scholar 

  • Siciliano PG, Tatchell K (1984) Cell 31:969–978

    Google Scholar 

  • Struhl K (1982a) Proc Natl Acad Sci USA 79:7385–7389

    Google Scholar 

  • Struhl K (1982b) Cold Spring Harbor Symp Quant Biol 47:901–910

    Google Scholar 

  • Struhl K, Hill DE (1987) Mol Cell Biol 7:104–110

    Google Scholar 

  • Tschumper G, Carbon J (1980) Gene 10:157–166

    Google Scholar 

  • Vinograd J, Lebowitz J, Watson R (1968) J Mol Biol 33:173–197

    Google Scholar 

  • Wray LV Jr, Witte MM, Dickson RC, Rilley MI (1987) Mol Cell Biol 7:1111–1121

    Google Scholar 

  • Yocum RR, Hanley S, West R Jr, Ptashne M (1984) Mol Cell Biol 4:1985–1998

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ficca, A.G., Hollenberg, C.P. Functional relationship among TATA sequences, gene induction and transcription initiation in the β-galactosidase, LAC4, gene from Kluyveromyces lactis . Curr Genet 15, 261–269 (1989). https://doi.org/10.1007/BF00447041

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00447041

Key words

Navigation