Skip to main content
Log in

Mutational analysis of the upstream activation site of yeast ribosomal protein genes

  • Original articles
  • Published:
Current Genetics Aims and scope Submit manuscript

Summary

Most ribosomal protein (rp-)genes in yeast are preceded by conserved sequence motifs that act as upstream transcription-activating sites (RPG box). These sequence elements have previously been shown to represent specific binding sites for a protein factor, TUF. Comparison of the various nucleotide elements identified so far indicates a remarkably high degree of variation in the respective sequences. On the other hand, a methylation interference study performed with one RPG box revealed close contact points with the TUF protein along the entire sequence. To investigate the sequence requirements of the RPG box, we inserted synthetic oligonucleotides that differed from the general consensus sequence ACACCCATACATTT at single positions into a deletion mutant of the L25 promoter that lacked its natural RPG elements. Transcription activity was estimated by Northern analyses of the cellular level of L25-galK hybrid transcripts. The results show that in the 3′ part of this sequence element single substitutions are allowed at all positions, in the 5′ part, however, the nucleotide requirements appear to be more stringent. In particular, the invariant C at position 5 of the consensus sequence is absolutely necessary for its enhancer function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bollen GHPM, Molenaar CMT, Cohen LH, van Raamsdonk-Duin MMC, Mager WH, Planta RJ (1982) Gene 18:29–37

    Google Scholar 

  • Brand AH, Micklem G, Nasmyth K (1987) Cell 51:709–719

    Google Scholar 

  • Bromley S, Hereford L, Rosbash M (1982) Mol Cell Biol 2:1205–1211

    Google Scholar 

  • Butler J, McDonald DJ (1988) Curr Genet 14:405–412

    Google Scholar 

  • Buchman AR, Kimmerly WJ, Rine J, Kornberg RD (1988) Mol Cell Biol 8:210–225

    Google Scholar 

  • Hu N-T, Messing J (1982) Gene 17:271–277

    Google Scholar 

  • Huet J, Cottrell P, Cool M, Vignais M-L, Thiele D, Marck C, Buhler J-M, Sentenac A, Fromageot P (1985) EMBO J 4:3539–3547

    Google Scholar 

  • Kimmerley W, Buchman A, Kornberg R, Rine J (1988) EMBO J 7:2241–2253

    Google Scholar 

  • Larkin JC, Thompson JR, Woolford JL (1987) Mol Cell Biol 7:1764–1775

    Google Scholar 

  • Leer RJ, van Raamsdonk-Duin MMC, Schoppink PJ, Cornelissen MTE, Cohen LH, Mager WH, Planta RJ (1983) Nucleic Acids Res 11:7759–7768

    Google Scholar 

  • Leer RJ, van Raamsdonk-Duin MMC, Mager WH, Planta RJ (1985) Curr Genet 9:273–277

    Google Scholar 

  • Machida M, Kemura H, Jigami Y, Tanaka H (1988) Nucleic Acids Res 16:1407–1422

    Google Scholar 

  • Mager WH (1988) Biochim Biophys Acta 949:1–15

    Google Scholar 

  • Mann C, Buhler JM, Treich I, Sentenac A (1987) Cell 48:627–637

    Google Scholar 

  • Maxam A, Gilbert W (1980) Methods Enzymol 65:499–560

    Google Scholar 

  • McMaster SK, Carmichael GG (1977) Proc Natl Acad Sci USA 74:4835–4838

    Google Scholar 

  • Meinet S, Gony M, Marck C, Sentenac A, Buhler J-M (1988) J Biol Chem 263:2830–2839

    Google Scholar 

  • Mirande M, Waller J-P (1988) J Biol Chem 263:18444–18451

    Google Scholar 

  • Planta RJ, Mager WH (1988) In: Tuite MF, Picard M, Bolotin-Fukuhara M (eds) Genetics of translation. NATO ASI series, series H, vol 14. Springer, Berlin Heidelberg New York, p 117

    Google Scholar 

  • Remacha M, Saenz-Robles MT, Vilella MD, Ballesta JPG (1988) J Biol Chem 263:9094–9101

    Google Scholar 

  • Rotenberg MO, Woolford JL (1986) Mot Cell Biol 6:674–687

    Google Scholar 

  • Rymond BC, Zitomer RS, Schümperli D, Rosenberg M (1983) Gene 25:249–262

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) Proc Natl Acad Sci USA 74:5463–5467

    Google Scholar 

  • Schwindinger WF, Warner JR (1987) J Biol Chem 262:5690–5695

    Google Scholar 

  • Shore D, Nasmyth K (1987) Cell 51:721–732

    Google Scholar 

  • Siliciano PG, Tatchell K (1984) Cell 37:969–978

    Google Scholar 

  • Stanway C, Mellor J, Ogden JE, Kingsman AJ, Kingsman SM (1987) Nucleic Acids Res 15:6855–6873

    Google Scholar 

  • Teem JL, Abovich N, Käufer NF, Schwindinger WF, Warner JR, Levy A, Woolford J, Leer RJ, van Raamsdonk-Duin MMC, Mager WH, Planta RJ, Schultz L, Friesen JD, Fried H, Rosbash M (1984) Nucleic Acids Res 12:8295–8312

    Google Scholar 

  • Vignais M-L, Woudt LP, Wassenaar GM, Mager WH, Sentenac A, Planta RJ (1987) EMBO J 6:1451–1457

    Google Scholar 

  • Vignais M-L (1989) Thesis, Université de Paris, Paris

  • Woudt LP, Smit AB, Mager WH, Planta RJ (1986) EMBO J 5:1037–1040

    Google Scholar 

  • Woudt LP, Mager WH, Nieuwint RTM, Wassenaar GM, van der Kuyl AC, Murre JJ, Hoekman MFM, Brockhoff PGM, Planta RJ (1987) Nucleic Acids Res 15:6037–6048

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nieuwint, R.T.M., Mager, W.H., Maurer, K.C.T. et al. Mutational analysis of the upstream activation site of yeast ribosomal protein genes. Curr Genet 15, 247–251 (1989). https://doi.org/10.1007/BF00447039

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00447039

Key words

Navigation