Advertisement

Archives of Microbiology

, Volume 152, Issue 1, pp 16–19 | Cite as

Pep5, a new lantibiotic: structural gene isolation and prepeptide sequence

  • Cortina Kaletta
  • Karl-Dieter Entian
  • Roland Kellner
  • Günther Jung
  • Michaela Reis
  • Hans-Georg Sahl
Original Papers

Abstract

A wobbled 14-mer oligonucleotide was derived from the amino acid sequence of the 34-residue propeptide of the lantibiotic Pep5 (Kellner et al. 1989). Using this hybridization probe, the structural gene of Pep5, pepA, was located on the 18.6 kbp plasmid pED503. The nucleotide sequence of pepA codes for a prepeptide with 60 residues and proves that Pep5 is ribosomally synthesized. The N-terminus of the prepeptide has a high α-helix probability and a characteristic proteolytic cleavage site precedes the C-terminal 34-residue propeptide. Our present theory is that maturation of Pep5 involves (a) enzymic conversion of Thr, Ser and Cys into dehydrated amino acids and sulfide bridges, (b) membrane translocation and cleavage of the modified prepeptide.

Key words

Lantibiotic Pep5 Nucleotide sequence Staphylococcus epidermidisLanthionine Non-proteinogenic amino acids Post-translational modification 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allgaier H, Jung G, Werner RG, Schneider U, Zähner H (1985) Elucidation of the structure of epidermin, a ribosomally synthesized tetracyclic heterodetic polypeptide antibiotic. Angew Chemie 24:1051–1053Google Scholar
  2. Allgaier H, Jung G, Werner RG, Schneider U, Zähner H (1986) Epidermin: sequencing of a heterodetic tetracyclic 21-peptide amide antibiotic. Eur J Biochem 160:9–22Google Scholar
  3. Banerjee S, Hansen JN (1988) Structure and expression of a gene encoding the precursor of subtilin, a small protein antibiotic. J Biol Chem 263:9508–9514Google Scholar
  4. Buchman GW, Banerjee S, Hansen JN (1988) Structure, expression, and evolution of a gene encoding the precursor of ninin, a small protein antibiotic. J Biol Chem 263:16260–16266Google Scholar
  5. Birnboim HC, Doly J (1979) Rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nuc Ac Res 7:1513Google Scholar
  6. Ersfeld-Dreßen H, Sahl HG, Brandis H (1984) Plasmid involvement in production of an immunity to the staphylococcin-like peptide Pep5. J Gen Microbiol 130:3029–3035Google Scholar
  7. Garnier J, Osguthorpe DJ, Robson B (1978) Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J Mol Biol 120:97–120Google Scholar
  8. Gross E, Kiltz H (1973) The number and nature of α,β-unsaturated amino acids in subtilin. biochem Biophys Res Commun 50: 559–565Google Scholar
  9. Gross E, Morell JL (1971) The structure of nisin. J Am Chem Soc 93:4634–4635Google Scholar
  10. Hattori M, Sakaki Y (1985) Dideoxy sequencing method using denaturated plasmid templates. Anal Biochem 152:232–238Google Scholar
  11. Hopp TP, Woods KR (1982) A computer program for predicting protein antigenic determinants. Mol Immunol 20:483–489Google Scholar
  12. Kaletta C, Entian K-D, (1989) Nisin a peptide antibiotic: cloning, sequencing of the nisA gene and post-translational processing of its peptide product. J Bacteriol 171:1597–1601Google Scholar
  13. Karplus PA, Schulz GE (1985) Predicting of chain flexibility in proteins. Naturwissenschaften 72:212–213Google Scholar
  14. Kellner R, Jung G, Hörner T, Zähner H, Schnell N, Entian K-D, Götz F (1988) Gallidermin: a new lanthionine containing polypeptide antibiotic. Eur J Biochem 177:53–59Google Scholar
  15. Kellner J, Jung G, Josten M, Kaletta C, Entian K-D, Sahl HG (1989) Pep5, a new lantibiotic: structure elucidation and amino acid sequence of the propeptide. Angew Chemie (in press)Google Scholar
  16. Kessler H, Steuernagel D, Gillessen D, Kamiyama T (1987) Complete sequence determination and localisation of one imino and three sulfide bridges of the nonadecapeptide Ro09-0198 by homonuclear 2D-NMR spectroscopy. The DQF-RELAYED-NOESY-experiment. Helv Chim Acta 70:726–741Google Scholar
  17. Kordel M, Benz R, Sahl HG (1988) Susceptibility of bacterial, eukaryotic and artificial membranes to the disruptive action of the cationic peptides Pep5 and nisin. J Bacteriol 170:84–88Google Scholar
  18. Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of proteins. J Mol Biol 157:105–132Google Scholar
  19. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning. Cold Spring Harbour LaboratoryGoogle Scholar
  20. McDonell MW, Simon MN, Studier FW (1977) Analysis of restriction fragments of T7 DNA and determination of molecular weights by electrophoresis in neutral and alkaline gels. J Mol Biol 110:119Google Scholar
  21. Ruhr E, Sahl HG (1985) Mode of action of the peptide antibiotic nisin and influence on the membrane potential of whole cells and on cytoplasmic and artifical membrane vesicles. Antimicrob Agents Chemother 27:841–845Google Scholar
  22. Sahl HG (1985) Influence of the staphylococcin like peptide Pep5 on membrane potential of bacterial cells and cytoplasmic membrane vesicles. J Bacteriol 162:833–836Google Scholar
  23. Sahl HG, Brandis H (1981) Production, purification and chemical properties of an antistaphylococcal agent produced by Staphylococcus epidermidis. J Gen Microbiol 127:377–384Google Scholar
  24. Sahl HG, Brandis H (1983) Efflux of low-Mr substances from the cytoplasm of sensitive cells caused by the staphylococcin-like agent Pep5. FEMS Microbiol Lett 1:75–79Google Scholar
  25. Sahl HG, Kordel M, Benz R (1987a) Voltage-dependent depolarization of bacterial membranes and artificial lipid bilayers by the peptide antibiotic nisin. Arch Microbiol 149:120–124Google Scholar
  26. Sahl HG, Ersfeld-Dreßen H, Bierbaum G, Josten M, Kordel M, Reis M, Schüller F (1987b) Different mechanisms of insensitivity to the staphylococcin-like peptide Pep5. Zentralbl Bacteriol Microbiol Hyg 1 Abtl Org A 267:173–185Google Scholar
  27. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci 74:5463–5467Google Scholar
  28. Schnell N, Entian K-D, Schneider U, Götz F, Götz F, Zähner H, Kellner R, Jung G (1988a) Prepeptide sequence of epidermin, a ribosomally synthesized antibiotic with four sulphide-rings. Nature 333:276–279Google Scholar
  29. Schnell N, Entian K-D, Götz F, Hörner T, Kellner R, Jung G (1989) Structural gene isolation and prepeptide sequence of gallidermin, a new lanthionine containing antibiotic. FEMS Microb Lett (in press)Google Scholar
  30. Southern E (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503–517Google Scholar
  31. Tautz D, Renz N (1983) An optimized freeze squeeze method for recovery of DNA fragments from agarose gels. Anal Biochem 132:503–517Google Scholar
  32. Wakamiya T, Ueki Y, Shiba T, Kido Y, Motoki Y (1985) The structure of ancovenin, a new peptide inhibitor of angiotensin I converting enzym. Tetrahedron Lett 26:665–668Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Cortina Kaletta
    • 1
  • Karl-Dieter Entian
    • 1
  • Roland Kellner
    • 2
  • Günther Jung
    • 2
  • Michaela Reis
    • 3
  • Hans-Georg Sahl
    • 3
  1. 1.Institut für Mikrobiologie der Universität FrankfurtFrankfurt/MFederal Republic of Germany
  2. 2.Institut für Organische Chemie der Universität TübingenTübingenFederal Republic of Germany
  3. 3.Institut für Medizinische Mikrobiologie und Immunologie der Universität BonnBonnFederal Republic of Germany

Personalised recommendations