Archives of Microbiology

, Volume 152, Issue 5, pp 468–472 | Cite as

Subcellular localization of calcium in sporangiophores of Phycomyces blackesleeanus

  • Marisela Morales
  • José Ruiz-Herrera
Original Papers

Abstract

The in situ localization of Ca2+ in stage I sporangiophores of the fungus Phycomyces blakesleeanus was achieved with the potassium pyroantimonate technique. Precipitates of calcium-antimonate were present in mitochondria, vacuoles, endoplasmic reticulum and adjacent cytoplasm, “Golgi-like” bodies, and nuclei but not cell walls. Material treated with the calcium chelator EGTA lacked these precipitates. The preferential localization of Ca2+ in mitochondria, endoplasmic reticulum and vacuoles suggests that these organelles modulate the level of this cation in sporangiophores of P. blakesleeanus.

Key words

Calcium Phycomyces blakesleeanus Sporangiophore 

Abbreviations

EGTA

ethyleneglycol-bis-(β-aminoethyl ether) N,N, tetraacetic acid

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Achenbach F, Achenbach U, Kessler D (1984) Calcium binding sites in plasmodia of Physarium polycephalum as revealed by the pyroantimonate technique. J Histochem Cytochem 32:1177–1184Google Scholar
  2. Bergman K, Burke PV, Cerdá-Olmedo E, David CN, Delbruck M, Foster KM, Goodell EW, Heisenberg M, Meissner G, Zalokar M, Dennison DS, Shropshire W (1969) Phycomyces. Bacteriol Rev 33:99–157Google Scholar
  3. Bond JS, Butler PE (1987) Intracellular proteases. Ann Rev Biochem 56:333–364Google Scholar
  4. Hutchinson TE, Cantino ME, Cantino EC (1977) Calcium is a prominent constituent of gamma particle in the zoospore of Blastocladiella emersonii as revealed by X-ray microanalysis. Biochem Biophys Res Commun 74:336–342Google Scholar
  5. Kurihara H, Fujita H (1984) Cytochemical studies on the localization and functional properties of calcium in anterior pituitary cells. Histochem 81:9–13Google Scholar
  6. Marmé D (1983) Calcium transport and function. In: Läuchli A, Bieleski RL (eds) Inorganic plant nutrition, vol 15. Springer, Berlin Heidelberg New York Tokyo, pp 599–625Google Scholar
  7. Marmé D, Dieter D (1983) The role of Ca2+ and calmodulin in plants. In: Cheung WY (ed) Calcium and cell function, vol 4. Academic Press, New York, pp 263–311Google Scholar
  8. Marty F (1978) Cytochemical studies on GERL, provacuoles and vacuoles in root meristematic cells of Euphorbia. Proc Natl Acad Sci USA 75:852–856Google Scholar
  9. Mollenhauer HH (1964) Plastic embedding mixtures for use in electron microscopy. Stain Technol 39:111–114Google Scholar
  10. Morales M (1984) Estudio ultraestructural de la porción apical de esporangióforos en estadio I de Phycomyces blakesleeanus. Tesis de Maestría en Ciencias. Universidad de Guanajuato, Guanajuato, MéxicoGoogle Scholar
  11. Papahadjopoulos D (1978) Calcium-induced phase changes and fusion in natural and model membranes. Cell Surf Rev 5:765–790Google Scholar
  12. Picton JM, Steer MW (1983) Evidences for the role of Ca2+ ions in tip extension in pollen tubes. Protoplasma 115:11–17Google Scholar
  13. Pitt D, Ugalde UO (1984) Calcium in fungi. Plant Cell Environ 7:467–475Google Scholar
  14. Powell MJ (1983) Localization of antimonate-mediated precipitates of cations in zoospores of Chytriomyces hygalinus. Exp Mycol 7:266–277Google Scholar
  15. Reiss HD, Herth W (1979) Calcium ionophore A23187 affects localized wall secretion in the tip region of pollen tubes of Lilium longiflorum. Planta 145:225–232Google Scholar
  16. Reiss HD, Herth W (1979) Calcium ionophore A23187 affects localized wall secretion in the tip region of pollen tubes of Lilium longiflorum. Planta 145:225–232Google Scholar
  17. Reiss HD, Herth W (1982) Disoriented growth of pollen tubes of Lilium longiflorum Thunb induced by prolonged treatment with the calcium-chelating antibiotic, chlorotetracycline. Planta 156:218–225Google Scholar
  18. Reissing JL, Kinney SG (1983) Calcium as a branching signal in Neurospora crassa. J Bacteriol 154:1397–1402Google Scholar
  19. Reynolds ES (1963) The use of lead citrate at high pH as an electron opaque stain for electron microscopy. J Cell Biol 17:208–212Google Scholar
  20. Roux SJ, Slocum RD (1982) Role of calcium in mediating cellular functions important for growth and development in higher plants. In: Cheung WY (ed) Calcium and cell function, vol 3. Academic Press, New York, pp 409–453Google Scholar
  21. Stocum RD, Roux SJ (1982) An improved method for the subcellular localization of calcium using a modification of the antimonate precipitation technique. J Histochem Cytochem 30:617–629Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Marisela Morales
    • 1
    • 2
  • José Ruiz-Herrera
    • 1
    • 2
  1. 1.Departamento de Génetica y Biología MolecularCentro de Investigación y Estudios Avanzados del IPNMéxico
  2. 2.Instituto de Investigación en Biología Experimental, Facultad de QuímicaUniversidad de GuanajuatoGuanajuatoMéxico

Personalised recommendations