Advertisement

Archives of Microbiology

, Volume 125, Issue 3, pp 245–249 | Cite as

H2 production of Rhodospirillum rubrum during adaptation to anaerobic dark conditions

  • H. Voelskow
  • G. Schön
Article

Abstract

Rhodospirillum rubrum is able to produce H2 during fermentation anaerobically in the dark in two ways, namely through formate hydrogen lyase and through the nitrogenase. After chemotrophic preculture aerobically in the dark formate hydrogen lyase was synthesized after a lag phase, whilst after phototrophic preculture a slight activity was present from the beginning of the anaerobic dark culture. During fermentation metabolism its activity increased noticeably. Hydrogen production through the nitrogenase occurred if the nitrogenase had been activated during phototrophic preculture. It ceased during fermentation metabolism after about 3 1/2 h anaerobic dark culture. The CO insensitive H2 production by the nitrogenase could be partially inhibited by N2. Potential activity of this system, however, remained and could be increased under conditions of nitrogenase induction. It seems therefore possible that synthesis of nitrogenase under N-deficiency can occur during fermentation metabolism in the same way as the formation of the photosynthetic apparatus in order to prepare for subsequent phototrophic metabolism.

Key words

Pyruvate fermentation H2 production Formate hydrogen lyase Nitrogenase Rhodospirillum rubrum 

Abbreviations

CAP

chloramphenicol

DSM

Deutsche Sammlung von Mikroorganismen, Göttingen

FHL

formate hydrogen lyase

O.D

optical density

PFL

pyruvate formate lyase

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bennett, R., Rigopoulos, N., Fuller, R. C.: The pyruvate phosphoroclastic reaction and light-dependent nitrogen fixation in bacterial photosynthesis. Proc. Natl. Acad. Sci. USA 52, 762–768 (1964)Google Scholar
  2. Bothe, H.: Die biologische Stickstoffixierung. Naturwiss. Rundsch. 29, 316–324 (1976)Google Scholar
  3. Bulen, W. A., Burns, R. C., Le Comte, J. R.: Nitrogen fixation: Hydrosulfite as electron donor with cell-free preparations of Azotobacter vinelandii and Rhodospirillum rubrum. Proc. Natl. Acad. Sci. USA 53, 532–539 (1965)Google Scholar
  4. Burns, R. C., Bulen, W. A.: A procedure for the preparation of extracts from Rhodospirillum rubrum catalyzing N2 reduction and ATP-dependent H2 evolution. Arch. Biochem. Biophys. 113, 461–463 (1966)Google Scholar
  5. Gest, H., Kamen, M. D.: Photoreduction of molecular hydrogen by Rhodospirillum rubrum. Science 109, 558–559 (1949)Google Scholar
  6. Gest, H., Kamen, M. D., Bregoff, H. M.: Studies on the metabolism of photosynthetic bacteria. V. Photoproduction of hydrogen and nitrogen fixation by Rhodospirillum rubrum. J. Biol. Chem. 182, 153–170 (1950)Google Scholar
  7. Gest, H., Ormerod, J. G., Ormerod, K. S.: Photometabolism of Rhodospirillum rubrum. Light-dependent dissimilation of organic compounds to carbon dioxide and molecular hydrogen by an anaerobic citric acid cycle. Arch. Biochem. Biophys. 97, 21–33 (1962)Google Scholar
  8. Gest, H.: Energy conversion and generation of reduction of reduction power in bacterial photosynthesis. In: Advances in microbial physiology (Rose, A. H., Tempest, D. W., eds.), Vol. 7, pp. 243–282. New York, London: Academic Press 1972Google Scholar
  9. Gogotov, I. N., Zorin, N. A., Ushakov, V. M.: Formation of different forms of hydrogenase in Rhodospirillum rubrum as a function of growth conditions. Microbiology 42, 15–18 (1973)Google Scholar
  10. Gorrell, T. E., Uffen, R. L.: Fermentative metabolism of pyruvate by Rhodospirillum rubrum after anaerobic growth in darkness. J. Bacteriol. 131, 533–543 (1977)Google Scholar
  11. Gorrell, T. E., Uffen, R. L.: Light-dependent and light-independent production of hydrogen gas by photosynthesizing Rhodospirillum rubrum mutant C. Photochem. Photobiol. 27, 351–358 (1978)Google Scholar
  12. Gürgün, V.: Untersuchungen über den anaeroben Dunkel-stoffwechsel einiger Arten der phototrophen Purpurbakterien. Dissertation, Univ. Göttingen (1974)Google Scholar
  13. Gürgün, V., Kirchner, G., Pfennig, N.: Vergärung von Pyruvat durch sieben Arten phototropher Purpurbakterien. Z. All. Mikrobiol. 16, 573–586 (1976)Google Scholar
  14. Hillmer, P., Gest, H.: H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: H2 production by growing cultures. J. Bacteriol. 129, 724–731 (1977a)Google Scholar
  15. Hillmer, P., Gest, H.: H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: production and utilisation of H2 by resting cells. J. Bacteriol. 129, 732–739 (1977b)Google Scholar
  16. Jungermann, K., Schön, G.: Pyruvate formate lyase in Rhodospirillum rubrum Ha adapted to anaerobic dark conditions. Arch. Microbiol. 99, 109–116 (1974)Google Scholar
  17. Kamen, M. D., Gest, H.: Evidence for a nitrogenase system in the photosynthetic bacterium Rhodospirillum rubrum. Science 109, 560 (1949)Google Scholar
  18. Klemme, J.-H.: Untersuchungen zur Photoautotrophie mit molekularem Wasserstoff bei neuisolierten schwefelfreien Purpurbakterien. Arch. Mikrobiol. 64, 29–42 (1968)Google Scholar
  19. Lüderitz, R., Klemme, J.-H.: Isolation and characterization of a membrane-bound pyruvate dehydrogenase complex from the phototrophic bacterium Rhodospirillum rubrum. Z. Naturforsch. 32c, 351–361 (1977)Google Scholar
  20. Nakamura, H.: Über die Photosynthese bei der schwefelfreien Purpurbakterie, Rhodobacillus palustris. Beiträge zur Stoffwechselphysiologie der Purpurbakterien. I. Acta Phytochim. (Tokyo) 9, 189–229 (1937a)Google Scholar
  21. Nakamura, H.: Über das Vorkommen der Hydrogenlyase in Rhodobacillus palustris und über ihre Rolle im Mechanismus der bakteriellen. Photosynthese. Beiträge zur Stoffwechsel-physiologie der Purpurbakterien. III. Acta Phytochim. (Tokyo) 10, 211–218 (1937b)Google Scholar
  22. Neilson, A. H., Nordlund, S.: Regulation of nitrogenase synthesis in intact cells of Rhodospirillum rubrum: Inactivation of nitrogen fixation by ammonia, l-glutamine and l-asparagine. J. Gen. Microbiol. 91, 53–62 (1975)Google Scholar
  23. Ormerod, J. G., Ormerod, K. S., Gest, H.: Light-dependent utilization of organic compounds and photoproduction of molecular hydrogen by photosynthetic bacteria: relationships with nitrogen metabolism. Arch. Biochem. Biophys. 94, 449–463 (1961)Google Scholar
  24. Schick, H.-J.: Substrate and light dependent fixation of molecular nitrogen in Rhodospirillum rubrum Arch. Mikrobiol. 75, 89–101 (1971)Google Scholar
  25. Schön, G.: Fructoseverwertung und Bacteriochlorophyllsynthese in anaeroben Dunkel-und Lichtkulturen von Rhodospirillum rubrum. Arch. Mikrobiol. 63, 362–375 (1968)Google Scholar
  26. Schön, G., Voelskow, H.: Pyruvate fermentation in Rhodospirillum rubrum after transfer from aerobic to anacrobic conditions in the dark. Arch. Microbiol. 107, 87–92 (1976)Google Scholar
  27. Voelskow, H., Schön, G.: Pyruvate fermentation in light-grown cells of Rhodospirillum rubrum during adaptation to anaerobic dark conditions. Arch. Microbiol. 119, 129–133 (1978)Google Scholar
  28. Yoch, D. C., Arnon, D. I.: Biological nitrogen fixation by photosynthetic bacteria. In: The biology of nitrogen fixation (Quispel, A., ed.), pp. 687–695. Oxford, Amsterdam: North-Holland Publishing Company 1974Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • H. Voelskow
    • 1
  • G. Schön
    • 1
  1. 1.MikrobiologieInstitut für Biologie II der UniversitätFreiburgGermany

Personalised recommendations