Skip to main content
Log in

Ammonia oxidation by the methane oxidising bacterium Methylococcus capsulatus strain bath

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Soluble extracts of Methylococcus capsulatus (Bath) that readily oxidise methane to methanol will also oxidise ammonia to nitrite via hydroxylamine. The ammonia oxidising activity requires O2, NADH and is readily inhibited by methane and specific inhibitors of methane mono-oxygenase activity. Hydroxylamine is oxidised to nitrite via an enzyme system that uses phenazine methosulphate (PMS) as an electron acceptor. The estimated K mvalue for the ammonia hydroxylase activity was 87 mM but the kinetics of the oxidation were complex and may involve negative cooperativity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PMS:

Phenazine methosulphate

NADH:

nicotinamide adenine dinucleotide, reduced form

K m :

Michaelis constant

NO -2 :

nitrite

NH2OH:

hydroxylamine

References

  • Aleem, M. I. H.: Generation of reducing power in chemosynthesis. II. Energy linked reduction of pyridine nucleotides in the chemoautotroph Nitrosomonas europaea. Biochim. biophys. Acta. 113, 216–224 (1966)

    Google Scholar 

  • Bardsley, W. G.: The 3:3 function in enzyme kinetics. Possible shapes of v/s and (1/v)/(1/s) plots for third degree steady-state rate equations. J. theor. Biol. 65, 281–316 (1977)

    Google Scholar 

  • Colby, J., Dalton, H.: Some properties of a soluble methane mono-oxygenase from Methylococcus capsulatus strain Bath. Biochem. J. 157, 495–497 (1976)

    Google Scholar 

  • Colby, J., Dalton, H., Whittenbury, R.: An improved assay for bacterial methane mono-oxygenase: some properties of the enzyme from Methylomonas methanica. Biochem. J. 151, 459–462 (1975)

    Google Scholar 

  • Colby, J., Stirling, D. I., Dalton, H.: The soluble methane mono-oxygenase of Methylococcus capsulatus (Bath): its ability to oxygenate n-alkanes, n-alkenes, ethers, alicyclic, aromatic and heterocyclic compounds. Biochem. J. (in press, 1977)

  • Dalton, H., Whittenbury, R.: The acetylene reduction technique as an assay for the nitrogenase activity in the methane oxidising bacterium Methylococcus capsulatus strain Bath. Arch. Microbiol 109, 147–151 (1976)

    Google Scholar 

  • Ferenci, T., Strøm, T., Quayle, J. R.: Oxidation of carbon monoxide and methane by Pseudomonas methanica. J. Gen. Microbiol. 91, 79–91 (1975)

    Google Scholar 

  • Hirsch, P., Overrein, L., Alexander, M.: Formation of nitrite and nitrate by Acinomycetes and fungi. J. Bact. 82, 442–448 (1961)

    Google Scholar 

  • Hofman, T., Lees, H.: The biochemistry of the nitrifying organisms. 4. The respiration and intermediary metabolism of Nitrosomonas. Biochem. J. 54, 579–583 (1953)

    Google Scholar 

  • Hooper, A. B., Nason, A.: Characterisation of hydroxylamine-cytochrome c reductase from the chemo-autotrophs Nitrosomonas europaea and Nitrosocystis oceanus. J. biol. Chem. 240, 4044–4057 (1965)

    Google Scholar 

  • Hooper, A. B., Terry, K. R.: Specific inhibitors of ammonia oxidation in Nitrosomonas. J. Bact. 115, 480–485 (1973)

    Google Scholar 

  • Hubley, J. H., Thomson, A. W., Wilkinson, J. F.: Specific inhibitors of methane oxidation in Methylosinus trichosporium. Arch. Microbiol. 102, 119–202 (1975)

    Google Scholar 

  • Hutton, W. E., Zobell, C. E.: Production of nitrite from ammonia by methane oxidising bacteria. J. Bact. 65, 216–219 (1953)

    Google Scholar 

  • Lees, H.: The biochemistry of the nitrifying organisms. I. The ammonia-oxidising systems of Nitrosomonas. Biochem. J. 52, 134–142 (1952)

    Google Scholar 

  • Levitski, A., Koshland, D. E., Jr.: Negative co-operativity in regulatory enzymes. Proc. Nat. Acad. Sci. U.S.A. 62, 1121–1128 (1969)

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin phenol reagent. J. biol. Chem. 193, 265–275 (1951)

    Google Scholar 

  • Magee, W. E., Burris, R. H.: Fixation of N2 and utilisation of combined nitrogen by Nostoc muscorum. Am. J. Bot. 41, 777–782 (1954)

    Google Scholar 

  • Nicholas, D. J. D., Nason, A.: Determination of nitrate and nitrite. In: Methods in enzymology, Vol. III (S. P. Colowick, N. O. Kaplan, eds.), pp. 981–984. New York: Academic Press 1957

    Google Scholar 

  • Nicholas, D. J. D., Jones, O. T. G.: Oxidation of hydroxylamine in cell-free extracts of Nitrosomonas europaea. Nature 185, 512–514 (1960)

    Google Scholar 

  • Patel, R., Hou, C. T., Felix, A.: Inhibition of dimethyl ether and methane oxidation in Methylococcus capsulatus and Methylosinus trichosporium. J. Bact. 126, 1017–1019 (1976)

    Google Scholar 

  • Rees, M. K.: Studies of the hydroxylamine metabolism of Nitrosomonas europaea. 1. Purification of hydroxylamine oxidase. Biochemistry 7, 353–366 (1968)

    Google Scholar 

  • Rees, M. K., Nason, A.: Incorporation of atmospheric oxygen into nitrite formed during ammonia oxidation by Nitrosomonas europaea. Biochim. biophys. Acta. 113, 398–402 (1966)

    Google Scholar 

  • Ribbons, D. W.: Oxidation of C1 compounds by particulate fractions from Methylococcus capsulatus: Distribution and properties of methane-dependent reduced nicotinamide adenine dinucleotide oxidase (methane hydroxylase). J. Bact. 122, 1351–1362 (1975)

    Google Scholar 

  • Stirling, D. I., Dalton, H.: Cometabolism by an obligate methanotrophic bacterium, Methylococcus capsulatus. Proc. Soc. Gen. Microbiol. 4, 31 (1976)

    Google Scholar 

  • Stirling, D. I., Dalton, H.: The effect of metal-binding agents and other compounds on methane oxidation by two strains of Methylococcus capsulatus. Arch. Microbiol. 114, 71–76 (1977)

    Google Scholar 

  • Suzuki, I., Dular, U., Kwok, S. C.: Ammonia or ammonium ion as substrate for oxidation by Nitrosomonas europaea cells and extracts. J. Bact. 120, 556–558 (1974)

    Google Scholar 

  • Suzuki, I., Kwok, S. C.: Cell-free ammonia oxidation by Nitrosomonas europaea extracts: effects of polyamines, Mg2+ and albumin. Biochem. Biophys. Res. Commun. 39, 950–955 (1970)

    Google Scholar 

  • Suzuki, I., Kwok, S. C., Dular, U.: Competitive inhibition of ammonia oxidation in Nitrosomonas europaea by methane, carbon monoxide or methanol. FEBS Lett. 73, 117–120 (1976)

    Google Scholar 

  • Tonge, G. M., Harrison, D. E. F., Higgins, I. J.: Purification and properties of the methane mono-oxygenase enzyme system from Methylosinus trichosporium OB3b. Biochem. J. 161, 333–344 (1977)

    Google Scholar 

  • Verstraete, W., Alexander, M.: Heterotrophic nitrification by Arthrobacter sp. J. Bact. 110, 955–961 (1972)

    Google Scholar 

  • Watson, S. W.: Characteristics of a marine nitrifying bacterium, Nitrosocystis oceanus spn. Limnol. Oceanogr. (suppl.) 10, 274–289 (1965)

    Google Scholar 

  • Watson, S. W., Asbell, M. A., Valois, F. W.: Ammonia oxidation by cell-free extracts of Nitrosocystis oceanus. Biochem. Biophys. Res. Commun. 38, 1113–1119 (1970)

    Google Scholar 

  • Whittenbury, R., Phillips, K. C., Wilkinson, J. F.: Enrichment, isolation and some properties of methane-utilising bacteria. J. gen. Microbiol. 61, 205–218 (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dalton, H. Ammonia oxidation by the methane oxidising bacterium Methylococcus capsulatus strain bath. Arch. Microbiol. 114, 273–279 (1977). https://doi.org/10.1007/BF00446873

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00446873

Key words

Navigation