Skip to main content
Log in

The cryopreservation of Chlorella

3. Effect of heterotrophic nutrition on freezing tolerance

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Following a shift from autotrophic to heterotrophic nutrition, cells of Chlorella protothecoides become sensitive to the stresses of freezing and thawing. The injury then observed at slow rates of cooling cannot be explained by the cellular response to hypertonic solutions, and at faster cooling rates intracellular ice formation was not demonstrated to be damaging. These findings are at variance with suggested mechanisms of injury in other cellular systems. The results are compared with alterations in ultrastructure and in the composition of the cellular fatty acids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BHT:

butylated hydroxy toluene

TLC:

thin layer chromatography

AW-DMCS:

acid washed and silanized

References

  • Atkinson, A. W., Gunning, B. E. S., John, P. C. L.: Sporopollenin in the cell wall of Chlorella and other algae: Ultrastructure, chemistry, and incorporation of 14C-acetate, studied in synchronous cultures. Planta (Berl.) 107, 1–32 (1972)

    Google Scholar 

  • Bligh, F. G., Dyer, W. J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 (1959)

    Google Scholar 

  • Bullivant, S., Ames, A.: A simple freeze-fracture replication method for electron microscopy. J. Cell Biol. 29, 435–447 (1966)

    Google Scholar 

  • Clarke, A., Prince, P. A.: The origin of stomach oil in marine birds: Analysis of the stomach oil from six species of subantartic procellariiform birds. J. exp. Mar. Biol. Ecol. 23, 15–30 (1976)

    Google Scholar 

  • Erwin, J., Bloch, K.: Polyunsaturated fatty acids in some microorganisms. Biochem. Z. 338, 496–511 (1963)

    Google Scholar 

  • Farrant, J., Morris, G. J.: Thermal shock and dilution shock as the causes of freezing injury. Cryobiology 10, 134–140 (1973)

    Google Scholar 

  • Gerloff, E. D., Richardson, T., Stahmann, M. A.: Changes in fatty acids of alfalfa roots during cold hardening. Plant. Physiol. 41, 1280–1284 (1966)

    Google Scholar 

  • Hatano, S., Sadakane, H., Tutumi, H., Watanabe, T.: Studies on frost hardiness of Chlorella ellipsoidea. 1. Development of frost hardiness of Chlorella ellipsoidea in synchronous culture. Plant Cell Physiol. 17, 451–458 (1976a)

    Google Scholar 

  • Hatano, S., Sadakane, H., Tutumi, H., Watanabe, T.: Studies on frost hardiness of Chlorella ellipsoidea. 2. Effects of inhibitors of RNA and protein synthesis and surfactants on the process of hardening. Plant Cell Physiol. 17, 643–651 (1976b)

    Google Scholar 

  • Hitchcock, C., Nichols, B. W.: Plant lipid biochemistry. New York-London: Academic Press 1971

    Google Scholar 

  • James, R., Branton, D.: Lipid and temperature-dependent structural changes in Acholeplasma laidlawii cell membranes. Biochim. biophys. Acta (Amst.) 323, 378–390 (1973)

    Google Scholar 

  • Koehler, J. K., Johnson, L. K.: Food supply as a factor in the survival of frozen and thawed rotifers. Cryobiology 5, 375–378 (1969)

    Google Scholar 

  • Mazur, P.: Kinetics of water loss from cells at subzero temperatures and the likelihood of intracellular freezing. J. gen. Physiol. 47, 347–369 (1963)

    Google Scholar 

  • Mazur, P., Leibo, S. P., Chu, E. H. Y.: A two-factor hypothesis of freezing injury. Evidence from chinese hamster tissue culture cells. Exp. Cell Res. 71, 345–355 (1972)

    Google Scholar 

  • Morgan, T. E., Hanahan, D. J., Ekholm, J. A rapid method for deacylation of phospholipids and neutral lipids. Fed. Proc. 22, 414 (1963)

    Google Scholar 

  • Morris, G. J.: The cryopreservation of Chlorella. 1. Interactions of rate of cooling, protective additive and warning rate. Arch. Microbiol. 107, 57–62 (1976a)

    Google Scholar 

  • Morris, G. J.: The cryopreservation of Chlorella. 2. Effect of growth temperature on freezing tolerance. Arch. Microbiol. 107, 309–312 (1976b)

    Google Scholar 

  • Morris, G. J., Farrant, J.: Interactions of cooling rate and protective additive on the survival of washed human erythrocytes frozen to-196°C. Cryobiology 9, 173–181 (1972)

    Google Scholar 

  • Nichols, B. W.: Light induced changes in the lipids of Chlorella vulgaris. Biochim. biophys. Acta (Amst.) 106, 274–279 (1965)

    Google Scholar 

  • Niedermayer, W.: The elasticity of the yeast cell tonoplast related to its ultrastructure and chemical composition. 2. Chemical and cytochemical investigations. Cytobiologie 13, 380–393 (1976)

    Google Scholar 

  • Oldfield, E., Chapman, D.: Dynamics of lipids in membranes: heterogenicity and the role of cholesterol. FEBS letters 23, 285–297 (1972)

    Google Scholar 

  • Osborne, J. A., Morris, G. J., Lee, D.: Freezing of rat-liver lysosomes to-196°C in the presence and absence of dimethylsulfoxide. Europ. J. Biochem. 35, 445–449 (1973)

    Google Scholar 

  • Plattner, H., Fischer, W. M., Schmitt, W. W., Bachman, L.: Freeze etching without cryoprotectants. J. Cell Biol. 53, 116–126 (1972)

    Google Scholar 

  • Shihira-Ishikawa, I., Hase, E.: Nutritional control of cell pigmentation in Chlorella protothecoides with special reference to the degeneration of chloroplast induced by glucose. Plant Cell Physiol. 5, 227–240 (1964)

    Google Scholar 

  • Simonovitch, D., Rheaume, B., Pomeroy, K., Lepage, M.: Phospholipid, protein and nucleic acid increases in protoplasm and membrane structure associated with development of extreme resistance in black locust tree cells. Cryobiology 5, 202–225 (1968)

    Google Scholar 

  • Smittle, R. B., Gilliland, S. E., Speck, M. L., Walter, W. M.: Relationship of cellular fatty acid composition to survival of Lactobacillus bulgaricus in liquid nitrogen. Appl. Microbiol. 27, 738–743 (1974)

    Google Scholar 

  • Stadelmann, E. J.: Permeability to nonelectrolytes. 3. Absolute permeability constant K: Protozoa and lower plants. In: Environmental biology (P. L. Altman, D. S. Dittmer, eds.), pp. 559–563. Bethesda: Federation of American societies for experimental biology 1966

    Google Scholar 

  • Staehelin, A.: Die Ultrastruktur der Zellwand und des Chloroplasten von Chlorella. Z. Zellforsch. 74, 325–330 (1966)

    Google Scholar 

  • Towill, L. E., Mazur, P.: Osmotic shrinkage as a factor in freezing injury in plant tissue cultures. Plant Physiol. 57, 290–297 (1976)

    Google Scholar 

  • Van, Venrooij, G. E. P. M., Aertsen, A. M. H. J., Hax, W. M. A., Ververgaert, P. H. J. T., Verhoeven, J. J.: Freeze-etching freezing velocity and crystal size at different locations in samples. Cryobiology 12, 46–61 (1975)

    Google Scholar 

  • Verkleij A. J., Ververgaert, P. H. J., van Deenan, L. L. M., Elbers, P. F.: Phase transitions of phospholipid bilayers of Acholeplasma laidlawii visualized by freeze-fracturing electron microscopy. Biochim. biophys. Acta (Amst.) 288, 326–332 (1972)

    Google Scholar 

  • Van Zoelen, E. J. J., van der Neut-Kok, E. C. M. de Gier, J., van Deenan, L. L. M.: Osmotic behavoir of Acholeplasma laidlawii B cells with membrane lipids in liquid-crystalline and gel state. Biochim. biophys. Acta (Amst.) 394, 463–469 (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morris, G.J., Clarke, K.J. & Clarke, A. The cryopreservation of Chlorella . Arch. Microbiol. 114, 249–254 (1977). https://doi.org/10.1007/BF00446869

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00446869

Key words

Navigation