Skip to main content
Log in

Iron transport in Escherichia coli K-12

2,3-Dihydroxybenzoate-promoted iron uptake

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The study of iron uptake promoted by 2,3-dihydroxybenzoate (DHB) into Escherichia coli K-12 aroB mutants allowed some dissection of outer and cytoplasmic membrane functions. These strains are unable to produce the iron-transporting chelate enterochelin, unless fed with a precursor such as DHB. When added to the medium, enterochelin and its natural breakdown products, the linear dimer and trimer of 2,3-dihydroxybenzoylserine (DBS), efficiently transported iron via the feuB, tonB and fep gene products. Thus mutants in these genes were defective in transport of the above chelates. However, feuB and tonB mutants were able to take up iron when DHB was added to the medium. Thus DHB-promoted iron uptake bypassed two functions required for the transport of ferric-enterochelin from the medium. One of these functions, feuB, has been shown to be an outer membrane protein. In contrast to three other iron transport systems including ferric-enterochelin uptake, DHB-promoted iron uptake was little affected by the uncoupler 2,4-dinitrophenol. Dissipation of the energized state of the cytoplasmic membrane apparently only affects those iron transport systems which require an outer membrane protein. Since DHB-promoted iron uptake bypasses the feuB outer membrane protein and the tonB function, it is concluded that, in ferricenterochelin transport, the tonB gene may function in coupling the energized state of the cytoplasmic membrane to the protein-dependent outer membrane permeability. DHB-promoted iron uptake required the synthesis and enzymatic breakdown of enterochelin as judged by the effects of the entF and fesB mutations. A fep mutant was not only deficient in the transport of the ferric chelates of enterochelin and its breakdown products, but was also deficient in DHB-promoted iron uptake. A scheme is presented in which iron diffuses as DHB-complex through the outer membrane, and is subsequently captured by enterochelin or DBS dimer or trimer and translocated across the cytoplasmic membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DHB:

2,3-dihydroxybenzoate

DBS:

2,3-dihydroxybenzoylserine

NTA:

nitrilotriacetate

DNP:

2,4-dinitrophenol

References

  • Bachmann, B. J., Low, K. B., Taylor, A. L.: Recalibrated linkage map of Escherichia coli K-12. Bacteriol. Rev. 40, 116–167 (1976)

    Google Scholar 

  • Bassford, P. J., Bradbeer, C., Kadner, R. J., Schnaitman, C. A.: Transport of vitamin B12 in tonB mutants of Escherichia coli. J. Bacteriol 128, 242–247 (1976)

    Google Scholar 

  • Berger, E. A.: Different mechanisms of energy coupling for the active transport of proline and glutamine in Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 70, 1514–1518 (1973)

    Google Scholar 

  • Berger, E. A., Heppel, L. A.: Different mechanisms of energy coupling for the shock-sensitive and shock-resistant permeases of Escherichia coli. J. Biol. Chem. 249, 7747–7755 (1974)

    Google Scholar 

  • Bradbeer, C., Woodrow, M. L.: Transport of vitamin B12 in Escherichia coli: Energy dependence. J. Bacteriol. 128, 99–104 (1976)

    Google Scholar 

  • Braun, V., Hancock, R. E. W., Hantke, K., Hartmann, A.: Functional organization of the outer membrane of Escherichia coli. Phage and colicin receptors as components of iron uptake systems. J. Supramol. Struct. 5, 37–38 (1976)

    Google Scholar 

  • Bryce, G. F., Brot, N.: Studies on the enzymatic synthesis of the cyclic trimer of 2,3-dihydroxy-N-benzoyl-l-serine in Escherichia coli. Biochemistry 11, 1708–1715 (1972)

    Google Scholar 

  • Cardelli, J., Konisky, J.: Isolation and characteristics of an Escherichia coli mutant tolerant to colicins Ia and Ib. J. Bacteriol. 119, 379–385 (1974)

    Google Scholar 

  • Cleland, W. W.: Steady State Kinetics. In: The enzyme, Vol. II (P. D. Boyer, ed.), pp. 1–66, New York: Academic Press 1970

    Google Scholar 

  • Cox, G. B., Gibson, H., Luke, R. K. J., Newton, N. A., O'Brien, I. G., Rosenberg, H.: Mutations affecting iron transport in Escherichia coli. J. Bacteriol. 104, 219–226 (1970)

    Google Scholar 

  • Cunarro, J., Weiner, M. W.: Mechanism of action of agents which uncouple oxidative phosphorylation: direct correlation between proton-carrying and respiratory-releasing properties using rat liver mitochondria. Biochim. Biophys. Acta 387, 234–240 (1975)

    Google Scholar 

  • Davies, J. K., Reeves, P.: Genetics of resistance of colicins in Escherichia coli K-12: Cross resistance among colicins of group B. J. Bacteriol. 123, 96–101 (1975)

    Google Scholar 

  • Decad, G. M., Nikaido, H. Outer membrane of gram-negative bacteria. XII. Molecular-sieving function of cell wall. J. Bacteriol. 128, 325–336 (1976)

    Google Scholar 

  • Frost, G. E., Rosenberg, H.: The citrate-dependent iron transport system in Escherichia coli K-12 Biochim. Biophys. Acta 330, 90–101 (1973)

    Google Scholar 

  • Frost, G. E., Rosenberg, H.: Relationship between the tonB locus and iron transport in Escherichia coli. J. Bacteriol 124, 704–712 (1975)

    Google Scholar 

  • Guterman, S. K.: Colicin B: mode of action and inhibition by enterochelin. J. Bacteriol. 114, 1217–1224 (1973)

    Google Scholar 

  • Hancock, R. E. W., Braun, V.: The colicin I receptor of Escherichia coli K-12 has a role in enterochelin-mediated iron transport. FEBS Lett. 65, 208–210 (1976a)

    Google Scholar 

  • Hancock, R. E. W., Braun, V.: Nature of the energy requirement for the irreversible adsorption of bacteriophages T1 and Φ80 to Escherichia coli K-12. J. Bacteriol. 125, 409–415 (1976b)

    Google Scholar 

  • Hancock, R. E. W. Hantke, K., Braun, V.: Iron transport in Escherichia coli K-12: Involvement of the colicin B receptor and of a citrate-inducible protein. J. Bacteriol. 127, 1370–1375 (1976)

    Google Scholar 

  • Hantke, K., Braun, V.: Membrane receptor dependent iron transport in Escherichia coli. FEBS Lett. 49, 301–305 (1975a)

    Google Scholar 

  • Hantke, K., Braun, V.: A function common to iron-enterochelin transport and the action of colicins B, I, V in Escherichia coli. FEBS Lett. 59, 277–281 (1975b)

    Google Scholar 

  • Ito, T., Neilands, J. B.: Products of “low iron fermentation” with Bacillus subtilis: Isolation, characterization and synthesis of 2,3-dihydroxybenzoylglycine. J. Amer. Chem. Soc. 80, 4645–4646 (1958)

    Google Scholar 

  • Klein, W. L., Boyer, P. D.: Energization of active transport in Escherichia coli. J. Biol. Chem. 247, 7257–7265 (1972)

    Google Scholar 

  • Langman, L., Young, I. G., Frost, G. E., Rosenberg, H., Gibson, F.: Enterochelin system of iron transport in Escherichia coli: Mutations affecting ferric-enterochelin esterase. J. Bacteriol. 112, 1142–1149 (1972)

    Google Scholar 

  • Luke, R. K. J., Gibson, F.: Location of three genes concerned with the conversion of 2,3-dihydroxybenzoate into enterochelin in Escherichia coli K-12. J. Bacteriol. 107, 557–562 (1971)

    Google Scholar 

  • O'Brien, I.G., Cox, G. B., Gibson, F.: Enterochelin hydrolysis and iron metabolism in Escherichia coli. Biochim. Biophys. Acta 237, 537–549 (1971)

    Google Scholar 

  • O'Brien, I. G., Gibson, F.: The structure of enterochelin and related 2,3-dihydroxyl-N-benzoylserine conjugates from Escherichia coli Biochim. Biophys Acta 215, 393–402 (1970)

    Google Scholar 

  • Pittard, J., Wallace, B. J.: Distribution and function of genes concerned with aromatic biosynthesis in Escherichia coli. J. Bacteriol. 91, 1494–1508 (1966)

    Google Scholar 

  • Pugsley, A. P., Reeves, P.: Iron uptake in colicin B-resistant mutants of Escherichia coli K-12. J. Bacteriol. 126, 1052–1062 (1976a)

    Google Scholar 

  • Pugsley, A. P., Reeves, P.: Characterization of colicin B resistant mutants of Escherichia coli K-12: colicin resistance and the role of enterochelin. J. Bacteriol. 127, 218–228 (1976b)

    Google Scholar 

  • Pugsley, A. P., Reeves, P.: The role of colicin receptors in the uptake of enterochelin by Escherichia coli K-12. Biochem. Biophys. Res. Commun. 74, 903–911 (1977a)

    Google Scholar 

  • Pugsley, A. P., Reeves, P.: Uptake of ferrienterochelin by Escherichia coli: energy dependent stage of uptake. J. Bacteriol. 130, 26–36 (1977b)

    Google Scholar 

  • Rogers, G. D., Neilands, J. B.: Microbial iron transport compounds. In: Handbook of microbiology, Vol. 2 (A. L. Laskin, H. A. Lechevalier, eds.), pp. 823–830. Cleveland: C.R.C. Press 1974

    Google Scholar 

  • Rosenberg, H., Young, I. G.: Iron transport in the enteric bacteria. In: Microbial iron metabolism (J. B. Neilands, ed.) pp. 67–82 New York: Academic Press 1974

    Google Scholar 

  • Wang, C. C., Newton, A.: Iron transport in Escherichia coli: relationship between chromium sensitivity and high iron requirement in mutants of Escherichia coli. J. Bacteriol 98, 1135–1141 (1969)

    Google Scholar 

  • Wang, C. C., Newton, A.: An additional step in the transport of iron defined by the tonB locus of Escherichia coli. J. Biol. Chem. 246, 2147–2151 (1971)

    Google Scholar 

  • Wayne, R., Frick, K. Neilands, J. B.: Siderophore protection against colicins M, B, V, and Ia in Escherichia coli. J. Bacteriol. 126, 7–12 (1976)

    Google Scholar 

  • Wayne, R., Neilands, J. B.: Evidence for common binding sites for ferrichrome compounds and bacteriophage Φ80 in the cell envelope of Escherichia coli. J. Bacteriol. 121, 497–503 (1975)

    Google Scholar 

  • Young, I. G.: Preparation of enterochelin from Escherichia coli. Preparative Biochem. 6, 123–131 (1976)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hancock, R.E.W., Hantke, K. & Braun, V. Iron transport in Escherichia coli K-12. Arch. Microbiol. 114, 231–239 (1977). https://doi.org/10.1007/BF00446867

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00446867

Key words

Navigation