Skip to main content
Log in

Differentiation between Clostridium acidiurici and Clostridium cylindrosporum on the basis of specific metal requirements for formate dehydrogenase formation

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The formate dehydrogenases of Clostridium acidiurici and of C. cylindrosporum coupled the oxidation of formate with the reduction of viologen dyes. The basal activity level was about 0.85 μmoles/min s mg of protein for both species. The level of formate dehydrogenase of C. acidiurici increased 12-fold when 10-7 M tungstate and selenite were present during growth. Molybdate exerted no effect. On the other hand, molybdate and selenite were required to increase the formate dehydrogenase of C. cylindrosporum, and tungstate exhibited an antagonistic effect in this organism.

Growth on hypoxanthine generally depended on the addition of bicarbonate. Supplementation with tungstate and selenite accelerated growth of C. acidiurici and increased again the level of formate dehydrogenase. The addition of both, molybdate and selenite was necessary to initiate growth of C. cylindrosporum and to form an active formate dehydrogenase.

The differences in the requirement for metal ion supplementation to form high levels of formate dehydrogenase and their involvement in hypoxanthine degradation can be used to differentiate between C. acidiurici and C. cylindrosporum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

FDH:

formate dehydrogenase

References

  • Andreesen, J. R., Gottschalk, G., Schlegel, H. G.: Clostridium formicoaceticum nov. spec. Isolation, description and distinction from C. aceticum and C. thermoaceticum. Arch. Mikrobiol 72, 154–174 (1970)

    Google Scholar 

  • Andreesen, J. R., Ljungdahl, L. G.: Formate dehydrogenase of Clostridium thermoaceticum: incorporation of selenium-75, and the effect of selenite, molybdate, and tungstate on the enzyme. J. Bacteriol. 116, 867–873 (1973)

    Google Scholar 

  • Andreesen, J. R., Ljungdahl, L. G.: Nicotinamide adenine dinucleotide phosphate-dependent formate dehydrogenase from Clostridium thermoaceticum: Purification and properties. J. Bacteriol. 120, 6–14 (1974)

    Google Scholar 

  • Andreesen, J. R., El Ghazzawi, E., Gottschalk, G.: The effects of ferrous ions, tungstate and selenite on the level of formate dehydrogenase in Clostridium formicoaceticum and formate synthesis from CO2 during pyruvate fermentation. Arch. Microbiol. 96, 103–118 (1974)

    Google Scholar 

  • Barker, H. A.: Fermentations of nitrogenous organic compounds. In: The bacteria, Vol. II: Metabolism (I. C. Gunsalus, R. Y. Stainer, eds.), pp. 151–207. New York-London: Academic Press 1961

    Google Scholar 

  • Barker, H. A., Beck, J. V.: The fermentative decomposition of purines by Clostridium acidici-urici and Clostridium cylindrosporum. J. Biol. Chem. 141, 3–27 (1941)

    Google Scholar 

  • Barker, H. A., Beck, J. V.: Clostridium acidi-urici and Clostridium cylindrosporum, organisms fermenting uric acid and some other purines. J. Bacteriol. 43, 291–304 (1942)

    Google Scholar 

  • Barker, H. A., Elsden, S. R.: Carbon dioxide utilization in the formation of glycine and acetic acid. J. Biol. Chem. 167, 619–620 (1947)

    Google Scholar 

  • Beisenherz, G., Bolze, H. J., Bücher, Th., Czok, R., Garbade, K. H., Meyer-Arendt, E., Pfleiderer, G.: Diphosphofructose-Aldolase, Phosphoglyceraldehyd-Dehydrogenase, Milchsäure-Dehydrogenase, Glycerophosphat-Dehydrogenase und Pyruvat-Kinase aus Kaninchenmuskulatur in einem Arbeitsgang. Z. naturforsch. 8b, 555–577 (1953)

    Google Scholar 

  • Bradshaw, W. H., Barker, H. A.: Purification and properties of xanthine dehydrogenase from Clostridium cylindrosporum. J. Biol. Chem. 235, 3620–3629 (1960)

    Google Scholar 

  • Bradshaw, W. H., Reeder, D. J.: Ferredoxin coupling of formate oxidation to urate reduction in extracts of Clostridium cylindrosporum. Bacteriol. Proc., p. 110 (1964)

  • Bray, R. C.: Molybdenum iron-sulfur flavin hydroxylases and related enzymes: In: The enzymes, 3rd ed., Vol. 12 (P. Boyer, ed.), pp. 300–418 New York-London: Academic Press 1975

    Google Scholar 

  • Corwin, A. H., Arellano, R. R., Chivvis, A. B.: Anomalies of viologens in bases and water. Biochim. Biophys. Acta 162, 533–538 (1968)

    Google Scholar 

  • Enoch, H. G., Lester, R. L.: Effects of molybdate, tungstate, and selenium compounds on formate dehydrogenase and other enzyme systems in Escherichia coli. J. Bacteriol. 110, 1032–1040 (1972)

    Google Scholar 

  • Enoch, H. G., Lester, R. L.: The purification and properties of formate dehydrogenase and nitrate reductase from Escherichia coli. J. Biol. Chem. 250, 6693–6705 (1975)

    Google Scholar 

  • Gottschalk, G., Barker, H. A.: Presence and stereospecificity of citrate synthase in anaerobic bacteria. Biochemistry 6, 1027–1034 (1967)

    Google Scholar 

  • Karlsson, J. L., Barker, H. A.: Tracer experiments on the mechanism of uric acid decomposition and acetic acid synthesis by Clostridium acidi-urici. J. Biol. Chem. 178, 891–902 (1949)

    Google Scholar 

  • Kearny, J. J., Sagers, R. D.: Formate dehydrogenase from Clostridium acidiurici. J. Bacteriol. 109, 152–161 (1972)

    Google Scholar 

  • Ljungdahl, L. G., Andreesen, J. R.: Tungsten, a component of active formate dehydrogenase of Clostridium thermoaceticum. FEBS-Lett. 54, 279–282 (1975)

    Google Scholar 

  • Ljungdahl, L. G., Andreesen, J. R.: Reduction of CO2 to acetate in homoacetate fermenting clostridia and the involvement of tungsten in formate dehydrogenese. In: Sympsium on microbial production and utilization of gases (H2, CH4, CO) (H. G. Schlegel, G. Gottschalk, N. Pfennig, eds.), pp. 163–172, Göttingen Goltze 1976

    Google Scholar 

  • Ljungdahl, L. G., Sherod, D. W., Moore, M. R., Andreesen, J. R.: Properties of enzymes from Clostridium thermoaceticum and Clostridium formicoaceticum. Experientia Suppl. 26, 237–248 (1976)

    Google Scholar 

  • Lovenberg, W., Buchanan, B. B., Raninowitz, J. C.: Studies on the chemical nature of clostridial ferredoxin. J. Biol. Chem. 238, 3899–3913 (1963)

    Google Scholar 

  • Michaelis, L., Hill, E. S.: The viologen indicators. J. Gen. Physiol. 16, 859–873 (1933)

    Google Scholar 

  • O'Brien, W. E., Brewer, J. M., Ljungdahl, L. G.: Chemical, physical and enzymatic comparisons of formyltetrahydrofolate synthetases from thermo- and mesophilic clostridia. Experientia Suppl. 26, 249–262 (1976)

    Google Scholar 

  • Rabinowitz, J. C.: Intermediates in purine breakdown. In: Methods in enzymology, Vol. 6 (S. P. Colowick, N. O. Kaplan, eds.), pp. 703–713 New York-London: Academic Press 1963

    Google Scholar 

  • Rabinowitz, J. C., Barker, H. A.: Purine fermentation by Clostridium cylindrosporum. II. Purine transformations. J. Biol. Chem. 218, 161–173 (1956)

    Google Scholar 

  • Rabinowitz, J. C., Himes, R. H.: Folic acid coenzymes. Fed. Proc. 19, 963–970 (1960)

    Google Scholar 

  • Sagers, R. D., Carter, J. E.: l-Serine dehydratase (Clostridium acidiurici). In: Methods in enzymology, Vol. 17 (B. H. Tabor, C. W. Tabor, eds.), pp. 351–356. New York-London, Academic Press 1971

    Google Scholar 

  • Schulman, M., Parker, D., Ljungdahl, L. G., Wood, H. G.: Total synthesis of acetate from CO2. V. Determination by mass analysis of the different types of acetate formed from 13CO2 by heterotrophic bacteria. J. Bacteriol. 109, 633–644 (1972)

    Google Scholar 

  • Stadtman, T. C.: Selenium biochemistry. Science 183, 915–922 (1974)

    Google Scholar 

  • Thauer, R. K.: CO2-Reduction to formate by NADPH. The initial step in the total synthesis of acetate from CO2 in Clostridium thermoaceticum. FEBS-Lett. 27, 111–115 (1972)

    Google Scholar 

  • Thauer, R. K.: CO2 reduction to formate in Clostridium acidiurici. J. Bacteriol. 114, 443–444 (1973)

    Google Scholar 

  • Thauer, R. K., Fuchs, G., Schnitker, U., Jungermann, K.: CO2 reductase from Clostridium pasteurianum: molybdenum dependence of synthesis and inactivation by cyanide. FEBS-Lett. 38, 45–48 (1973)

    Google Scholar 

  • Thorneley, R. V. F.: A convenient electrochemical preparation of reduced methyl viologen and a kinetic study of the reaction with oxygen using an anaerobic stopped-flow apparatus. Biochim. Biophys. Acta 333, 487–496 (1974)

    Google Scholar 

  • Vogels, G. D., van der Drift, C.: Degradation of purines and pyrimidines by microorganisms. Bacteriol. Rev. 40, 403–468 (1976)

    Google Scholar 

  • Wood, H. G.: A study of carbon dioxide fixation by mass determination of the types of C13-acetate. J. Biol. Chem. 194, 905–931 (1952)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagner, R., Andreesen, J.R. Differentiation between Clostridium acidiurici and Clostridium cylindrosporum on the basis of specific metal requirements for formate dehydrogenase formation. Arch. Microbiol. 114, 219–224 (1977). https://doi.org/10.1007/BF00446865

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00446865

Key words

Navigation