Skip to main content
Log in

An NADP-linked acetoacetyl CoA reductase from Zoogloea ramigera

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Zoogloea ramigera I-16-M was found to contain two stereospecific acetoacetyl CoA reductases; one was NADP+-linked and d(-)-β-hydroxybutyryl CoA specific and the other was NAD+-linked and l(+)-isomer specific. The NADP+-linked enzyme, purified approximately 150-fold, had a pH optimum for the reduction of acetoacetyl CoA at 8.1, but no definite pH optimum for the oxidation of β-hydroxybutyryl CoA. The apparent Michaelis constants for acetoacetyl CoA and NADPH were 8.3 and 21 μM, respectively. The enzyme was markedly inhibited by acetoacetyl CoA at concentrations higher than 10 μM.

The incorporation of [1-14C]acetyl CoA into poly-β-hydroxybutyrate (PHB) by bacterial crude extract (containing β-ketothiolase, acetoacetyl CoA reductases, enoyl CoA hydratases and PHB synthases) or by a system reconstituted from purified preparations of β-ketothiolase, acetoacetyl CoA reductase and PHB synthase, was observed only in the presence of NADPH, but not NADH. Among various enzymes involved in PHB metabolism, only the specific activity of glucose 6-phosphate dehydrogenase was elevated 5-fold within 2 h after the addition of glucose to the cells grown in the basal medium.

These findings suggest that, in Z. ramigera I-16-M, acetoacetyl CoA is directly reduced to d(-)-β-hydroxybutyryl CoA by the NADP+-dependent reductase, and PHB synthesis is at least partially controled by NADPH availability through glucose 6-phosphate dehydrogenase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

PHB:

poly-β-hydroxybutyrate

References

  • Bergmeyer, H. U., Gawehn, K., Klotzsch, H., Krebs, H. A., Williamson, D. H.: Purification and properties of crystalline 3-hydroxybutyrate dehydrogenase from Rhodopseudomonas spheroides. Biochem. J. 102, 423–431 (1967)

    Google Scholar 

  • Cleland, W. W., Thompson, V. W., Barden, R. E.: Isocitrate dehydrogenase (TPN-specific) from pig heart. In: Methods in enzymology, Vol. 13 (J. M. Lowenstein, ed.), pp. 30–33. New York-London: Academic Press 1969

    Google Scholar 

  • Crabtree, K., McCoy, E., Boyle, W. C., Rohlich, G. A.: Isolation, identification, and metabolic role of the sudanophilic granules of Zoogloea ramigera. Appl. Microbiol. 13, 218–226 (1965)

    Google Scholar 

  • Flavin, M.: Methylmalonyl coenzyme A. In: Methods in enzymology, Vol. 6 (S. P. Colowick, N. O. Kaplan, eds.), pp. 538–539. New York-London: Academic Press 1963

    Google Scholar 

  • Fukui, T., Yoshimoto, A., Matsumoto, M., Hosokawa, S., Saito, T., Nishikawa, H., Tomita, K.: Enzymatic synthesis of poly-β-hydroxybutyrate in Zoogloea ramigera. Arch. Microbiol. 110, 149–156 (1976)

    Google Scholar 

  • Griebel, R., Smith, Z., Merrick, J. M.: Metabolism of poly-β-hydroxybutyrate. I. Purification, composition, and properties of native poly-β-hydroxybutyrate granules from Bacillus megaterium. Biochemistry 7, 3676–3681 (1968)

    Google Scholar 

  • Joshi, M. D., Jagannathan, V.: Hexokinase. I. Brain. In: Methods in enzymology, Vol. 9 (W. A. Wood, ed.), pp. 371–375. New York-London: Academic Press 1966

    Google Scholar 

  • Kirkman, H. N.: Glucose 6-phosphate dehydrogenase and human erythrocytes. Nature 184, 1291–1292 (1959)

    Google Scholar 

  • Layne, E.: Spectrophotometric and turbidimetric methods for measuring proteins. In: Methods in enzymology, Vol. 3 (S. P. Colowick, N. O. Kaplan, eds.), pp. 447–454. New York-London: Academic Press 1957

    Google Scholar 

  • Lin, L. P., Sadoff, L.: Encystment and polymer production by Azotobacter vinelandii in the presence of β-hydroxybutyrate. J. Bacteriol. 95, 2336–2343 (1968)

    Google Scholar 

  • Main, R. K., Wilkins, M. J., Cole, L. J.: A modified calcium phosphate for column chromatography of polynucleotides and proteins. J. Am. Chem. Soc. 81, 6490–6495 (1959)

    Google Scholar 

  • Merrick, J. M., Doudoroff, M.: Enzymatic synthesis of poly-β-hydroxybutyric acid in bacteria. Nature 189, 890–892 (1961)

    Google Scholar 

  • Moffatt, J. G., Khorana, H. G.: Nucleoside polyphosphates. XII. The total synthesis of coenzyme A. J. Am. Chem. Soc. 83, 663–675 (1961)

    Google Scholar 

  • Morris, J. G., Redfearn, E. R.: Vitamins and coenzymes. In: Data for biochemical research (R. M. C. Dawson, D. C. Elliot, W. H. Elliot, K. M. Jones, eds.), pp. 192–193. Oxford: Clarendon Press 1969

    Google Scholar 

  • Moskowitz, G. J., Merrick, J. M.: Metabolism of poly-β-hydroxybutyrate. II. Enzymatic synthesis of d-(-)-β-hydroxybutyryl coenzyme A by an enoyl hydrase from Rhodospirillum rubrum. Biochemistry 8, 2748–2755 (1969)

    Google Scholar 

  • Nishimura, T., Saito, T., Tomita, K.: Purification and properties of β-ketothiolase from Zoogloea ramigera. Arch. Microbiol. (submitted)

  • Olsen, I., Merrick, J. M., Goldstein, I. J.: Chemical synthesis of the isomeric dimeric esters of β-hydroxybutyric acid. Biochemistry 4, 453–456 (1965)

    Google Scholar 

  • Park, J. T., Johnson, M. J.: A submicrodetermination of glucose. J. Biol. Chem. 181, 149–151 (1949)

    Google Scholar 

  • Ritchie, G. A. F., Senior, P. J., Dawes, E. A.: The purification and characterization of acetoacetyl coenzyme A reductase from Azotobacter beijerinckii. Biochem. J. 121, 309–316 (1971)

    Google Scholar 

  • Senior, P. J., Dawes, E. A.: The regulation of poly-β-hydroxybutyrate metabolism in Azotobacter beijerinckii. Biochem. J. 134, 225–238 (1973)

    Google Scholar 

  • Sierra, G., Gibbons, N. E.: Role and oxidation pathway of poly-β-hydroxybutyric acid in Micrococcus halodenitrificans. Can. J. Microbiol. 8, 255–269 (1962)

    Google Scholar 

  • Simon, E., Shemin, D.: The preparation of S-succinyl coenzyme A. J. Am. Chem. Soc. 75, 2520 (1953)

    Google Scholar 

  • Stadtman, E. R.: Preparation and assay of acyl coenzyme A and other thiol esters; use of hydroxylamine. In: Methods in enzymology, Vol. 3 (S. P. Colowick, N. O. Kaplan, eds.), pp. 931–941. New York-London: Academic Press 1957

    Google Scholar 

  • Stanier, R. Y., Doudoroff, M., Kunisawa, R., Contopoulou, R.: The role of organic substrates in bacterial photosynthesis. Proc. Nat. Acad. Sci. U. S. 45, 1246–1260 (1959)

    Google Scholar 

  • Stern, J. R.: Crystalline crotonase from ox liver. In: Methods in enzymology, Vol. 1 (S. P. Colowick, N. O. Kaplan, eds.), pp. 559–566. New York-London: Academic Press 1955a

    Google Scholar 

  • Stern, J. R.: Enzymes of acetoacetate formation and breakdown. In: Methods in enzymology, Vol. 1 (S. P. Colowick, N. O. Kaplan, eds.), pp. 573–585. New York-London: Academic Press 1955b

    Google Scholar 

  • Stokes, J. L., Powers, M. T.: Stimulation of poly-β-hydroxybutyrate oxidation in Sphaerotilus discophorus by manganese and magnesium. Arch. Mikrobiol. 59, 295–301 (1967)

    Google Scholar 

  • Wieland, T., Rueff, L.: Synthese von S-β-Oxybutyryl- und S-Acetacetyl-Coenzym A. Angew. Chem. 65, 186–187 (1953)

    Google Scholar 

  • Williamson, D. H., Mellanby, J., Krebs, H. A.: Enzymatic determination of d(-)-β-hydroxybutyric acid and acetoacetic acid in blood. Biochem. J. 82, 90–96 (1962)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saito, T., Fukui, T., Ikeda, F. et al. An NADP-linked acetoacetyl CoA reductase from Zoogloea ramigera . Arch. Microbiol. 114, 211–217 (1977). https://doi.org/10.1007/BF00446864

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00446864

Key words

Navigation