Archives of Microbiology

, Volume 107, Issue 2, pp 167–182 | Cite as

Structure and composition of intracytoplasmic membranes of Ectothiorhodospira mobilis

  • Saundra Herndon Oyewole
  • Stanley C. Holt


The lamellar membrane stacks of Ectothiorhodospira mobilis were isolated and purified by a combination of lysozyme and osmotic shock treatment, followed by differential and density gradient centrifugation. Preparations of lamellar membranes were enriched at least 2.4-fold in the ratio of bacteriochlorophyll a to protein.

Thin-sectioning, negative staining, platinumcarbon shadowing and freeze-etching were used to study the architecture of the membrane units. Both platinum-carbon shadowing and freeze-etching showed the outer surfaces of the isolated lamellar membrane stacks to be relatively smooth. Particles averaging 7 nm in diameter were seen on several faces following freeze-ctching.

Non-polar amino acids amounted to 60% of the total amino acid composition. Lipids constituted 32% of the membrane dry weight. Phosphatidyl ethanolamine and diphosphatidyl glycerol were the major phospholipids. Fatty acids of 10–15 carbons represented a small fraction of both membrane and whole cell fatty acids. Monoenes constituted 36% of the total membrane fatty acids and 38.4% of the total whole cell fatty acids. The major fatty acids of both whole cells and purified membranes were C16:0, C18:1 and cyclopropane C19:0.

Key words

Ectothiorhodospira mobilis Photosynthetic membranes Electron microscopy Isolation of membranes Structure of membranes Composition of membranes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arntzen, C. J., Dilley, R. A., Crane, F. L.: A comparison of chloroplast membrane surfaces visualized by freeze-etch and negative staining techniques; and ultrastructural characterization of membrane fractions obtained from digitonin treated spinach chloroplasts. J. Cell Biol. 43, 16–31 (1969)Google Scholar
  2. Benson, A. A.: The plant sulfolipid. Advanc. Lipid Res. 1, 387–394 (1963)Google Scholar
  3. Boas, N.: Method for the determination of hexosamine in tissues. J. biol. Chem. 204, 553–563 (1953)Google Scholar
  4. Branton, D.: Fracture faces of frozen membranes. Proc. nat. Acad. Sci. (Wash.) 55, 1048–1056 (1966)Google Scholar
  5. Brian, B. L., Gardner, E. W.: A simple procedure for detecting the presence of cyclopropane fatty acids in bacterial lipids. Appl. Microbiol. 16, 549–552 (1968)Google Scholar
  6. Carroll, K. K.: Quantitative estimation of peak areas in gas-liquid chromatography. Nature (Lond.) 191, 377–378 (1961)Google Scholar
  7. Cherni, N. E., Solovjeva, J. V., Fedorov, V. D., Kondratieva, E. N.: Ultrastructure of two species of purple sulfur bacteria. Mikrobiologiya 38, 479–484 (1969)Google Scholar
  8. Christie, W. W., Holman, R. T.: Mass spectrometry of lipids. I. Cyclopropane fatty acids esters. Lipids 1, 176–182 (1966)Google Scholar
  9. Clayton, R. K.: Toward the isolation of a photochemical reaction center in Rhodopseudomonas spheroides. Biochim. biophys. Acta (Amst.) 75, 312–323 (1963)Google Scholar
  10. Cohen-Bazire, G., Sistrom, W. R.: The procaryotic photosynthetic apparatus. In: The chlorophylls, L. Vernon, G. Seely, eds., pp. 313–341. New York: Academic Press 1966Google Scholar
  11. Cohen-Bazire, G., Sistrom, W. R., Stanier, R. Y.: Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J. cell. comp. Physiol. 49, 25–68 (1957)Google Scholar
  12. Constantopoulos, G., Block, K.: Isolation and characterization of glycolipids from some photosynthetic bacteria. J. Bact. 93, 1788–1793 (1967)Google Scholar
  13. Cronan, J. E., Nunn, W. D., Batchelor, J. G.: Studies on the biosynthesis of cyclopropane fatty acids in Escherichia coli. Biochim. biophys. Acta (Amst.) 348, 63–75 (1974)Google Scholar
  14. Deamer, D. W., Leonard, R., Tranton, D.: Lamellar and hexagonal lipid phases visualized by freeze-etching. Biochim. biophys. Acta (Amst.) 219, 47–60 (1970)Google Scholar
  15. Drews, G.: Untersuchungen zur Substruktur der „Chromatophoren” von Rhodospirillum rubrum und Rhodospirillum molischianum. Arch. Mikrobiol. 36, 99–108 (1960)Google Scholar
  16. Fraker, P. T., Kaplan, S.: Isolation and fractionation of the photosynthetic membranous organelles from Rhodospeudomonas spheroides. J. Bact. 108, 465–473 (1971)Google Scholar
  17. Giesbrecht, P., Drews, G.: Über die Organisation und die makromolekulare Architektur der Thylakoide „lebender Bakterien”. Arch. Mikrobiol. 54, 297–330 (1966)Google Scholar
  18. Giles, K. W., Myers, A.: An improved diphenylamine method for the estimation of deoxyribonucleic acid. Nature (Lond.) 206, 93 (1965)Google Scholar
  19. Goodenough, U. W., Staehelin, L. A.: Structural differentiation of stacked and unstacked chlorplast membranes. J. Cell Biol. 48, 594–619 (1971)Google Scholar
  20. Gorchein, A., Neuberger, A., Tait, G. H.: The isolation and characterization of subccllular fractions from pigmented and unpigmented cells of Rhodospeudomonas spheroides. Proc. roy. Soc. B 170, 229–246 (1968)Google Scholar
  21. Green, D. E., Fleischer, S.: The role of lipids in mitochondrial electron transfer and oxidative phosphorylation. Biochim. biophys. Acta (Amst.) 70, 554–582 (1963)Google Scholar
  22. Green, D. E., Haard, N. F., Lenaz, G., Silman, H. I.: On the noncatalytic proteins of membrane systems. Proc. nat. Acad. Sci. (Wash.) 60, 277–284 (1968)Google Scholar
  23. Holt, S. C., Leadbetter, E. R.: Fine structure of Sporocytophaga myxococcoides. Arch. Mikrobiol. 57, 199–213 (1967)Google Scholar
  24. Holt, S. C., Trüper, H. G., Takács, B. J.: Fine structure of Ectothiorhodospira mobilis strain 8113 thylakoids: Chemical fixation and freeze-etching studies. Arch. Mikrobiol. 62, 111–128 (1968)Google Scholar
  25. Johnson, A. R.: Improved method of hexosamine determination. Analyt. Biochem. 44, 628–635 (1971)Google Scholar
  26. Kaneshiro, T., Marr, A. G.: Hydroxy fatty acids of Azotobacter agilis. Biochim. biophys. Acta (Amst.) 70, 271–277 (1963)Google Scholar
  27. Kellenberger, E., Ryter, A., Sechaud, J.: Electron microscope study of DNA-containing plasms. II. Vegetative and mature phage DNA compared with normal bacterial nucleoids in different physiological states. J. Cell Biol. 4, 671–678 (1958)Google Scholar
  28. Lascelles, J.: The chromatophores of photosynthetic bacteria. J. gen. Microbiol. 29, 47–52 (1962)Google Scholar
  29. Lascelles, J.: The bacterial photosynthetic apparatus. Advanc. Microbiol. Phys. 2, 1–42 (1968)Google Scholar
  30. Lockshin, A., Burris, R. H.: Solubilization and properties of chloroplast lamellar protein. Proc. nat. Acad. Sci. (Wash.) 56, 1564–1570 (1966)Google Scholar
  31. Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurements with the Folin phenol reagent. J. biol. Chem. 193, 265–275 (1951)Google Scholar
  32. Mangold, H. K.: Thin-layer chromatography of lipids. In: Thinlayer chromatography. A laboratory handbook, E. Stahl, ed., pp. 147–186. New York: Springer 1965Google Scholar
  33. Moor, H.: Die Gefrier-Fixation lebender Zellen und ihre Anwendung in der Elektronenmikroskopie. Z. Zellforsch., Abt. Histochem. 62, 546–580 (1964)Google Scholar
  34. Moor, H., Mühlethaler, K.: Fine structure in frozen-etched yeast cells. J. Cell Biol. 17, 609–628 (1963)Google Scholar
  35. Moor, H., Mühlethaler, K., Waldner, H., Frey-Wyssling, A.: A new freezing ultra-microtome. J. Cell Biol. 10, 1–13 (1961)Google Scholar
  36. Moudrianakis, E.: Structural and functional aspects of photosynthetic lamellae. Fed. Proc. 27, 1180–1185 (1968)Google Scholar
  37. Mühlethaler, K., Moor, H., Szarkowski, J. W.: The ultrastructure of the chloroplast lamellae. Planta Arch. wiss. Bot. 67, 304–323 (1965)Google Scholar
  38. Oelze, J., Drews, G.: Membranes of photosynthetic bacteria. Biochim. biophys. Acta (Amst.) 265, 209–239 (1972)Google Scholar
  39. Oelze, J., Schroeder, J., Drews, G.: Bacteriochlorophyll, fatty acid, and protein synthesis in relation to thylakoid formation in mutant strains of Rhodospirillum rubrum. J. Bact. 101, 669–674 (1970)Google Scholar
  40. O'Leary, W. M.: The chemistry and metabolism of microbial lipids, pp. 160–172. New York: The World 1967Google Scholar
  41. Park, R. B.: Advances in photosynthesis. J. chem. Educ. 39, 424–429 (1962)Google Scholar
  42. Park, R.: Subunits of chloroplast structure and quantum conversion in photosynthesis. Int. Rev. Cytol. 20, 67–95 (1966)Google Scholar
  43. Park, R. B., Biggins, J.: Quantasome: Size and composition. Science 144, 1009–1011 (1964)Google Scholar
  44. Park, R. B., Branton, D.: Freeze-etching of chloroplasts from glutaraldehyde-fixed leaves. In: Energy conversion by the photosynthetic apparatus. Brookhaven Symposium in Biology, No. 19, pp. 341–352. New York: Upton 1966Google Scholar
  45. Park, R. B., Pfeifhofer, A. O.: Ultrastructural observations on deep-etched thylakoids. J. Cell Sci. 5, 299–311 (1969)Google Scholar
  46. Park, R. B., Pon, N. G.: Chemical composition and the substructure of lamellae isolated from Spinacea oleracea chloroplasts. J. molec. Biol. 6, 105–114 (1963)Google Scholar
  47. Pendland, J. C., Aldrich, H. C.: Ultrastructural organization of chloroplast thylakoids of the green alga Oocystis marssonii. J. Cell Biol. 57, 306–714 (1973)Google Scholar
  48. Pfennig, N.: Anreicherungskulturen für rote und grüne Schwefelbakterien. In: Anreicherungskultur und Mutantenauslese. Zbl. Bakt., I. Abt., Suppl. 1, 179–189 (1965)Google Scholar
  49. Pinto da Silva, P., Branton, D.: Membrane intercalated particles: The plasma membrane as a planar fluid domain. Chem. Phys. Lipids 8, 265–278 (1972)Google Scholar
  50. Poukka, R., Vasenius, L., Turpeinen, O.: Catalytic hydrogenation of fatty acid methyl esters for gas-liquid chromatography. J. Lipid Res. 3, 128–129 (1962)Google Scholar
  51. Raymond, J. C., Sistrom, W. R.: Ectothiorhodospira halophilia: A new species of the genus Ectothiorhodospira. Arch. Mikrobiol. 69, 121–126 (1969)Google Scholar
  52. Remsen, C. C., Watson, S. W., Waterbury, J. B., Trüper, H. G.: Fine structure of Ectothiorhodospira mobilis Pelsch. J. Bact. 95, 2374–3292 (1968)Google Scholar
  53. Reynolds, E. S.: The use of lead citrate at high pH as an electronopaque stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963)Google Scholar
  54. Ryhage, R., Stenhagen, E.: Mass spectrometry in lipid research. J. Lipid Res. 1, 361–390 (1960)Google Scholar
  55. Sabatini, D., Bensch, K., Barrnett, R. J.: Cytochemistry and electron microscopy. The preservation of cellular ultrastructure and enzymatic activity by aldehyde fixation. J. Cell Biol. 17, 19–58 (1963)Google Scholar
  56. Salton, M. R.: The bacterial membrane. In: Biomembranes, Vol. 1, L. Manson, ed., pp. 1–65. New York: Plenum Press 1971Google Scholar
  57. Sims, R. P. A., Larose, J. A. G.: The use of iodine vapor as a general detecting agent in the thin layer chromatography of lipids. J. Amer. Oil Chemists' Soc. 39, 232 (1962)Google Scholar
  58. Skidmore, W. D., Entenman, C.: Two-dimensional thin-layer chromatography of rat liver phosphatides. J. Lipid Res. 3, 471–475 (1962)Google Scholar
  59. Steiner, S., Burnham, J. C., Conti, S. F., Lester, R. L.: Polar lipids of Chromatium strain D grown at different light intensities. J. Bact. 103, 500–503 (1970)Google Scholar
  60. Takács, B. J., Holt, S. C.: Thiocapsa floridana; a cytological, physical and chemical characterization. I. Cytology of whole cells and isolated chromatophore membranes. Biochim. biophys. Acta (Amst.) 233, 258–277 (1971a)Google Scholar
  61. Takács, B. J., Holt, S. C.: Thiocapsa floridana; a cytological, physical and chemical characterization. II. Physical and chemical characteristics of isolated and reconstituted chromatophores. Biochim. biophys. Acta (Amst.) 233, 278–295 (1971b)Google Scholar
  62. Tourtellotte, M. E., Zupnik, J. S.: Freeze-fractured Acholeplasma laidlawii membranes: Nature of particles observed. Science 179, 84–86 (1973)Google Scholar
  63. Trüper, H. G.: Ectothiorhodospira mobilis Pelsh, a photosynthetic sulfur bacterium depositing sulfur outside the cell. J. Bact. 95, 1910–1920 (1968)Google Scholar
  64. Vanderkooi, G., Capaldi, R.: A comparative study of the amino acid composition of membrane proteins and other proteins. Membrane structure and its biological applications. Ann. N.Y. Acad. Sci. 195, 135–138 (1972)Google Scholar
  65. Vaskovsky, V. E., Kostetsky, E. Y.: Modified spray for the detection of phospholipids on thin-layer chromatograms. J. Lipid Res. 9, 396 (1968)Google Scholar
  66. Wagner, H., Horhammer, L., Wolff, P.: Dünnschichtchromatographie von Phosphatiden und Glykolipiden. Biochem. Z. 334, 175–184 (1961)Google Scholar
  67. Weinstein, R. S., Koo, V. M.: Penetration of red cell membranes by some membrane-associated particles. Proc. Soc. exp. Biol. (N.Y.) 128, 353–357 (1968)Google Scholar
  68. Wells, M. A., Dittmer, J. C.: The use of sephadex for the removal of nonlipid contaminants from lipid extracts. Biochemistry 2, 1259–1263 (1963)Google Scholar
  69. Worden, P. B., Sistrom, W. R.: The preparation and properties of bacterial chromatophore fractions. J. Cell Biol. 23, 135–150 (1964)Google Scholar
  70. Zalkin, H., Law, J. H., Goldfine, H.: Enzymatic synthesis of cyclopropane fatty acids catalyzed by bacterial extracts. J. biol. Chem. 238, 1242–1248 (1963)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • Saundra Herndon Oyewole
    • 1
  • Stanley C. Holt
    • 1
  1. 1.Department of MicrobiologyUniversity of MassachusettsAmherstUSA

Personalised recommendations