Archives of Microbiology

, Volume 123, Issue 2, pp 143–149 | Cite as

Glycogen metabolism in resting and growing cells of Saccharomyces carlsbergensis

  • J. U. Becker
  • H. J. Vohmann
  • C. Eilers-König
Article

Abstract

Saccharomyces carlsbergensis cells, growing under carbohydrate or nitrogen limitation, initially deplete their glycogen, which is resynthesized only during the late exponential phase. Cells, harvested in the carly exponential phase, are even unable to synthesize glycogen in glucose-containing phosphate buffer. This is in contrast to cells from the stationary phase which rapidly synthesize glycogen under the same conditions. Lack of O2 slows down glycogen synthesis.

Contrary to cells suspended in complete medium, addition of ammonia alone to nitrogen free-media induced neither breakdown of glycogen, nor complete cessation of glycogen synthesis. Ammonia slowed down glycogen synthesis (both aerobic and anaerobic), only, in cells grown either under carbohydrate or under nitrogen limitation.

Glycogen synthesis was observed 1 min after addition of glucose to a starved cell suspension in phosphate buffer. Removal of the sugar from the buffer resulted in an instantanous decrease of the glycogen level in the cells. The results indicate that glycogen-metabolism is regulated by a variety of endogenous and environmental factors.

Key words

Saccharomyces carlsbergensis Yeast glycogen Glycogen metabolism Metabolic control Regulation Yeast-phosphorylase Yeast glycogen synthase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Becker, J. U.: Glycogen synthase in Saccharomyces carlsbergensis cells capable of oscillatory glycolysis. Arch. Microbiol. 115, 181–184 (1977)Google Scholar
  2. Becker, J. U.: A method for glycogen determination in whole yeast cells. Anal. Biochem. 86, 56–64 (1978)Google Scholar
  3. Bonnichsen, R.: Äthanol, Bestimmung mit Alkoholdehydrogenase und DPN. In: Methoden der enzymatischen Analyse (H. U. Bergmeyer, ed.) 1st Ed., Weinheim a.d. Bergstraße: Verlag Chemie, pp. 285–287 1962Google Scholar
  4. Chester, V. E.: Effect of Oxygen on endogenous metabolism of a respiratory-deficient brewer's yeast. Nature 189, 1956–1957 (1959)Google Scholar
  5. Fosset, M., Muir, L. W., Nielsen, L. D., Fischer, E. H.: Purification and properties of yeast phosphorylase a and b. Biochemistry 10, 4105–4113 (1971)Google Scholar
  6. Gosh, A., Charalampous, E., Sison, Y., Borer, R.: Metabolic functions of myo-inositol. J. Biol. Chem. 235, 2522–2528 (1960)Google Scholar
  7. Grba, S., Oura, E., Suomalainen, H.: On the formation of glycogen and trehalose in baker's yeast. Europ. J. Appl. Microbiol. 2, 29–37 (1975)Google Scholar
  8. Helmreich, E., Cori, C. F.: Regulation of glycolysis in muscle. Adv. Enzyme Regul. 3, 91–107 (1965)Google Scholar
  9. Huang, K. P., Cabib, E.: Yeast glycogen synthetase in the glucose 6-phosphate-dependent form I. J. Biol. Chem. 249, 3851–3857 (1974)Google Scholar
  10. Krebs, E. G., Preiss, J.: Regulatory mechanisms in glycogen metabolism. In: Biochemistry of carbohydrates. (W. J. Wheltan, ed.) pp. 337–389, London, Baltimore: Butterworth and University Park Press 1975Google Scholar
  11. Kreuzberg, K. H.: Interaction of d-fructose and fructose-1-phosphate with yeast phosphofructokinase and its influence on glycolytic oscillations. Biochim. Biophys. Acta, in press (1978)Google Scholar
  12. Küenzi, M.: Über den Reserve-Kohlenhydratstoffwechsel von Saccharomyces cerevisiae. Thesis No. 4544, ETH Zürich (1970)Google Scholar
  13. Küenzi, M. T., Fiechter, A.: Regulation of carbohydrate composition in Saccharomyces cerevisiae under growth limitation. Arch. Mikrobiol. 84, 254–265 (1972)Google Scholar
  14. La Rivière, J. W. M.: On the microbial metabolism of the tartaric acid isomers. Thesis, Univ. Delft (1958)Google Scholar
  15. Manners, J. D.: The Structure and Biosynthesis of Storage Carbohydrates in Yeast. In: The Yeasts, Vol. II (A. H. Rose, J. S. Harrison, eds.), pp. 419–437, London and New York: Academic Press 1971Google Scholar
  16. Mizani, S. M., Betz, A., Eilers-König, C.: Zur Regulation des anaeroben Intermediärstoffwechsels in ausgehungerten Hefezellen bei Zugabe von Glucose und NH4+-Ionen. Planta 117, 11–27 (1974)Google Scholar
  17. Rothman, L. B., Cabib, E.: Regulation of glycogen synthesis in the intact yeast cell. Biochemistry 8, 3332–3341 (1969)Google Scholar
  18. Rothman-Denes, L. B., Cabib, E.: Two forms of yeast glycogen synthetase and their role in glycogen accumulation. Proc. Natl. Acad. Sci. 66, 967–974 (1970)Google Scholar
  19. Schmidt, K., Jensen, S. L., Schlegel, H. G.: Die Carotinoide der Thiorhodaceae I. Arch. Mikrobiol. 46, 117–126 (1963)Google Scholar
  20. Slein, M. W.: d-Glucose: Bestimmung mit Hexokinase und Glucose-6-phosphat-Dehydrogenase. In: Methoden der enzymatischen Analyse (H. U. Borgmeyer, ed.), pp. 117–123, 1st Ed., Weinheim a. d. Bergstraße: Verlag Chemie 1962Google Scholar
  21. Sols, A., Gancedo, C., Delafuente, G.: Energy yielding metabolism in yeasts. In: The yeasts, Vol. II (A. H. Rose, J. S. Harrison, eds.), pp. 271–307, London and New York: Academic Press 1971Google Scholar
  22. Sols, A., Salas, M. L.: Phosphofructokinase, III. Yeast. In: Methods of Enzymology Vol. IX (S. P. Colowick, N. O. Kaplan, eds.), pp. 436–442, New York and London: Academic Press 1966Google Scholar
  23. Sy, I., Richter, D.: Content of cyclic 3′,5′-adenosine monophosphate and adenylylcyclase in yeast at various growth conditions. Biochemistry 11, 2788–2791 (1972)Google Scholar
  24. Trevelyan, W. E., Harrison, J. S.: Studies on yeast metabolism 7. Biochem. J. 63, 23–33 (1956)Google Scholar
  25. Vohmann, H. J.: Abbau und Speicherung von Reservekohlenhydraten bei Saccharomyces carlsbergensis. Thesis, Univ. of Bonn (1978)Google Scholar
  26. Von Meyenburg, H. K.: Der Sprossungscyclus von Saccharomyces cerevisiae. Pathol. Microbiol. 31, 117–127 (1968)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • J. U. Becker
    • 1
  • H. J. Vohmann
    • 1
  • C. Eilers-König
    • 1
  1. 1.Botanisches Institut der Universitat BonnBonn 1Germany

Personalised recommendations