Advertisement

Archives of Microbiology

, Volume 149, Issue 6, pp 572–579 | Cite as

Isolation of the sulphur reductase and reconstitution of the sulphur respiration of Wolinella succinogenes

  • I. Schröder
  • A. Kröger
  • J. M. Macy
Original Papers

Abstract

Wolinella succinogenes can grow at the expense of sulphur reduction by formate. The enzymes involved in the catalysis of this catabolic reaction have been investigated. From the results the following conclusions are drawn: 1. The enzyme isolated as a sulphide dehydrogenase from the cytoplasmic membrane of W. succinogenes is the functional sulphur reductase that operates in the electron transport from formate to sulphur. 2. The enzyme (Mr 200,000) consists essentially of one type of subunit with the Mr 85,000 and contains equal amounts of free iron and sulphide (120 μmol/g protein), but no heme. It represents the first functional sulphur reductase ever isolated. 3. The electron transport chain catalyzing sulphur reduction by formate consists merely of formate dehydrogenase and sulphur reductase. A lipophilic quinone which mediates the transfer of electrons between enzymes in other chains, is apparently not involved. This is the first known example of a phosphorylative electron transport chain that operates without a quinone. 4. The same formate dehydrogenase appears to operate in the electron transport both with sulphur and with fumarate as the terminal electron acceptor in W. succinogenes.

Key words

Sulphur reductase Sulphur respiration Electron transport Reconstitution Wolinella succinogenes 

Abbreviations

DMN

2,3-Dimethyl-1,4-naphthoquinone

DTT

dithiothreitol

MK

menaquinone (vitamin K2)

PMSF

phenylmethane sulfonylfluoride

Tricine

N-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl]-glycine

Tea

triethanolamine

Hepes

4-(2-hydroxyethyl)-1-piperazineethane sulfonate

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bergmeyer HU (1970) Methoden der enzymatischen Analyse. Verlag Chemie, Weinheim, pp 1596–1600Google Scholar
  2. Bode C, Goebell H, Stähler E (1968) Zur Eliminierung von Trübungsfehlern bei der Eiweißbestimmung mit der Biuretmethode. Z Klin Chem Klin Biochem 6:419–422Google Scholar
  3. Bokranz M, Mörschel E, Kröger A (1985) Structural and ATP hydrolyzing properties of the ATP synthase isolated from Wolinella succinogenes. Biochim Biophys Acta 810:84–93Google Scholar
  4. Brumby PE, Massey V (1967) Determination of non heme iron, total iron, and copper. Meth Enzymol 10:463–474Google Scholar
  5. Chen PS, Toribara TY, Warner H (1956) Microdetermination of phosphorus. Anal Chem 28:1756–1758Google Scholar
  6. Collins MD, Fernandez F (1984) Menaquinone-6 and thermoplasmaquinone-6 in Wolinella succinogenes. FEMS Microbiol Lett 22:273–276Google Scholar
  7. Fauque G, Herve D, Le Gall J (1979) Structure-function relationship in hemoproteins: The role of cytochrome c3 in the reduction of colloidal sulfur by sulfate-reducing bacteria. Arch Microbiol 121:261–264Google Scholar
  8. Fauque GD, Barton LL, Le Gall J (1980) Oxidative phosphorylation linked to the dissimilatory reduction of elemental sulphur by Desulfovibrio. Ciba Foundation Symposium 72:71–86Google Scholar
  9. Fliermans CB, Brock TD (1973) Assay of elemental sulfur in soil. Soil Science 115:120–122Google Scholar
  10. Francis RT, Becker RR (1984) Specific indication of hemoproteins in polyacrylamide gels using a double-staining process. Anal Biochem 136:509–514Google Scholar
  11. Gebhardt NA, Thauer RK, Linder D, Kaulfers PM, Pfennig N (1985) Mechanism of acetate oxidation to CO2 with elemental sulfur in Desulfuromonas acedoxidans. Arch Microbiol 141: 392–398Google Scholar
  12. Holloway PW (1973) A simple procedure for removal of Triton X-100 from protein samples. Anal Biochem 53:304–308Google Scholar
  13. King TE, Morris RO (1967) Determination of acid-labile sulfide and sulfhydryl groups. Meth Enzymol 10:634–641Google Scholar
  14. Kröger A, Innerhofer A (1976a) The function of menaquinone, covalently bound FAD and iron-sulfur protein in the electron transport from formate to fumarate of Vibrio succinogenes. Eur J Biochem 69:487–495Google Scholar
  15. Kröger A, Innerhofer A (1976b) The function of the b cytochromes in the electron transport from formate to fumarate of Vibrio succinogenes. Eur J Biochem 69:497–506Google Scholar
  16. Kröger A, Unden G (1985) The function of menaquinone in bacterial electron transport. In: Lenaz G (ed) Coenzyme Q. John Wiley, New York, pp 285–300Google Scholar
  17. Kröger A, Winkler E, Innerhofer A, Hackenberg H, Schägger H (1979) The formate dehydrogenase involved in electron transport from formate to fumarate in Vibrio succinogenes. Eur J Biochem 94:465–475Google Scholar
  18. Lenaz G, Fato R (1986) Is ubiquinone diffusion rate-limiting for electron transfer? J Bioenerg Biomembr 18:369–401Google Scholar
  19. Macy JM, Schröder I, Thauer RK, Kröger A (1986) Growth of Wolinella succinogenes on H-S plus fumarate and on formate plus sulfur as energy sources. Arch Microbiol 144:147–150Google Scholar
  20. Martin RG, Ames BN (1961) A method for determining the sedimentation behavior of enzymes: Application to protein mixtures. J Biol Chem 236:1372–1379Google Scholar
  21. Neuhoff V, Philipp K, Zimmer HG, Mesecke S (1979) A simple, versatile, sensitive and volume-independent method for quantitative protein determination which is independent of other external influences. Z Physiol Chem 360:1657–1670Google Scholar
  22. Paulsen J, Kröger A, Thauer RK (1986) ATP-driven succinate oxidation in the catabolism of Desulfuromonas acetoxidans. Arch Microbiol 144:78–83Google Scholar
  23. Pfennig N, Biebl H (1976) Desulfuromonas acetoxidans gen. nov. and sp. nov., a new anaerobic, sulfur-reducing, acetate-oxidizing bacterium. Arch Microbiol 110:3–12Google Scholar
  24. Schröder I, Roberton AM, Bokranz M, Unden G, Böcher R, Kröger A (1985) The membraneous nitrite reductase involved in the electron transport of Wolinella succinogenes. Arch Microbiol 140:380–386Google Scholar
  25. Tanford C, Nozaki Y, Reynolds JA, Makino S (1974) Molecular characterization of proteins in detergent solution. Biochemistry 13:2369–2376Google Scholar
  26. Unden G, Hackenberg H, Kröger A (1980) Isolation and functional aspects of the fumarate reductase involved in the phosphorylative electron transport of Vibrio succinogenes. Biochim Biophys Acta 591:275–288Google Scholar
  27. Unden G, Kröger A (1981) The function of the subunits of the fumarate reductase of Vibrio succinogenes. Eur J Biochem 120:577–584Google Scholar
  28. Unden G, Kröger A (1982) Reconstitution in liposomes of the electron-transport chain catalyzing fumarate reduction by formate. Biochim Biophys Acta 682:258–263Google Scholar
  29. Unden G, Kröger A (1983) Low potential cytochrome b as essential electron transport component of menaquinone reduction by formate in Vibrio succinogenes. Biochim Biophys Acta 725:325–331Google Scholar
  30. Unden G, Kröger A (1986) Reconstitution of a functional electron transport chain from isolated enzymes in liposomes. Meth Enzymol 126:387–399Google Scholar
  31. Unden G, Böcher R, Knecht A, Kröger A (1982) Hydrogenase from Vibrio succinogenes, a nickel protein. FEBS Lett 145:230–234Google Scholar
  32. Unden G, Mörschel E, Bokranz M, Kröger A (1983) Structural properties of the proteoliposomes catalyzing electron transport from formate to fumarate. Biochim Biophys Acta 725:41–48Google Scholar
  33. Widdel F (1988) Microbiology and ecology of sulfate- and sulfurreducing bacteria. In: Zehnder AJB (ed) Environmental microbiology of anaerobes. John Wiley, New York (in press)Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • I. Schröder
    • 1
  • A. Kröger
    • 1
  • J. M. Macy
    • 1
  1. 1.Institut für Mikrobiologie der J. W. Goethe-Universität Frankfurt am MainFrankfurtGermany

Personalised recommendations