Skip to main content
Log in

Über das Wasserstoff aktivierende System von Hydrogenomonas H16

I. Verteilung der Hydrogenase-Aktivität auf zwei Zellfraktionen

  • Published:
Archiv für Mikrobiologie Aims and scope Submit manuscript

Zusammenfassung

In zellfreien Extrakten aus Hydrogenomonas H 16 ist die Hydrogenase-Aktivität auf zwei Fraktionen verteilt, die durch einstündiges Zentrifugieren bei 100 000 g voneinander getrennt werden können. Die überstehende Fraktion reduziert Methylenblau, NAD, FMN, FAD und Sauerstoff, aber nicht NADP. Die Partikelfraktion reduziert Methylenblau und, anscheinend als einzigen physiologischen H-Acceptor, Sauerstoff. Cyanid und Kohlenmonoxyd hemmen nur die Sauerstoff-Reduktion durch die Partikelfraktion, aber nicht die der überstehenden Fraktion. Die Funktionen der beiden Hydrogenasen werden diskutiert.

Summary

In cell-free extracts of Hydrogenomonas H 16, the hydrogenase activity is found in two fractions which can be separated by centrifugation at 100000 g for one hour. The supernatant reduces methylene blue, NAD, FMN, FAD and oxygen, but not NADP. The particle fraction reduces methylene blue and apparently, only oxygen as a physiological H-acceptor. Cyanide and carbon monoxide inhibit oxygen reduction by the particle fraction, but not that of the supernatant. The functions of both hydrogenases are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Literatur

  • Ahrens, J.: persönliche Mitteilung 1965.

  • Akagi, J. M., and L. L. Campbell: Studies on thermophilic sulfatereducing bacteria. II. Hydrogenase activity of Clostridium nitrificans. J. Bact. 82, 927 (1961).

    Google Scholar 

  • Asnis, R. G., V. G. Vely, and M. C. Glick: Some enzymatic activities of particulate fraction from sonic lysates of Escherichia coli. J. Bact. 72, 314 (1956).

    Google Scholar 

  • Atkinson, D. E.: Hydrogen metabolism in Acetobacter peroxidans. J. Bact. 72, 189 (1956).

    Google Scholar 

  • —, and B. McFadden: The biochemistry of Hydrogenomonas. I. The hydrogenase of Hydrogenomonas facilis in cell-free preparations. J. biol. Chem. 210, 885 (1954).

    Google Scholar 

  • Bartha, R.: Physiologische Untersuchungen über den chemolithotrophen Stoffwechsel neu isolierter Hydrogenomonas-Stämme. Arch. Mikrobiol. 41, 313 (1962).

    Google Scholar 

  • Bernstein, S., and W. Vishniao: Purification and properties of a DPN-linked hydrogenase. Fed. Proc. 18, 192 (1958).

    Google Scholar 

  • Bone, D. H.: Localization of hydrogen activating enzymes in Pseudomonas saccharophila. Biochem. biophys. Res. Commun. 3, 211 (1960).

    Google Scholar 

  • —, and W. Vishniac: Purification and properties of different forms of hydrogen dehydrogenase. Biochim. biophys. Acta (Amst.) 67, 581 (1963).

    Google Scholar 

  • Bose, S. K., and H. Gest: Hydrogenase and light-stimulated electron transfer reactions in photosynthetic bacteria. Nature (Lond.) 195, 1168 (1962).

    Google Scholar 

  • Cota-Robles, E. H., A. G. Marr, and E. H. Nilson: Submicroscopic particles in extracts of Azotobacter vinelandii. J. Bact. 72, 243 (1958).

    Google Scholar 

  • Dolin, M. I.: Cytochrome-independent electron transport enzymes in bacteria. In: I. C. Gunsalus and R. Y. Stanier: The bacteria II, p. 425, New York: Academic Press 1961.

    Google Scholar 

  • Eberhardt, U.: Die Anreicherung von Knallgasbakterien. In: Anreicherungskultur und Mutantenauslese. Zbl. Bakt., I. Abt. Orig. Suppl. 1, 155 (1965).

    Google Scholar 

  • Fredricks, W. W., and E. R. Stadtman: The role of ferredoxin in the hydrogenase system from Clostridium kluyveri. J. biol. Chem. 240, 4065 (1965).

    Google Scholar 

  • Gest, H.: Molecular hydrogen: oxidation and formation in cellfree systems. In: W. D. McElroy and B. Glass; Phosphorus metabolism II, p. 522, Baltimore: The Johns Hopkins Press 1952a.

    Google Scholar 

  • —: The properties of cell-free hydrogenases of Escherichia coli and Rhodospirillum rubrum. J. Bact. 63, 111 (1952b).

    Google Scholar 

  • Gottschalk, G.: Die Biosynthese der Poly-β-hydroxybuttersäure durch Knallgasbakterien. Diss., Göttingen 1963.

  • Hughes, D. E.: A press for disrupting bacteria and other microorganisms. Brit. J. exp. Path. 32, 97 (1951).

    Google Scholar 

  • Hyndman, L. A., R. H. Burris, and P. W. Wilson: Properties of hydrogenase from Azotobacter vinelandii. J. Bact. 65, 522 (1953).

    Google Scholar 

  • King, N. K., and M. E. Winfield: The assay of soluble hydrogenase. Biochim. biophys. Acta (Amst.) 18, 431 (1955).

    Google Scholar 

  • Kinsky, S. C., E. R. Stadtman, and M. K. MacClay: Cofactor requirements for the pyridine nucleotide reduction by hydrogen. J. biol. Chem. 236, 574 (1960).

    Google Scholar 

  • Krasna, A. I., E. Riklis, and D. Rittenberg: The purification and properties of the hydrogenase of Desulfovibrio desulfuricans. J. biol. Chem. 235, 2717 (1960).

    Google Scholar 

  • La Riviere, J. W. M.: On the microbial metabolism of the tartaric acid isomeres. Diss., Delft 1958.

  • Lascelles, J.: Electron transport structures. In M. R. Pollock and M. H. Richmond, ed.: Function and structure in microorganisms, 15th Symp. Soc. Gen. Microbiol., p. 32. Cambridge: University Press 1965.

    Google Scholar 

  • Milner, H. W., N. S. Lawrence, and C. S. French: Colloidal dispersion of chloroplast material. Science 111, 633 (1950).

    Google Scholar 

  • Packer, L.: Respiratory carriers involved in the oxidation of hydrogen and lactate in facultative autotroph. Arch. Biochem. 78, 54 (1958).

    Google Scholar 

  • —, and W. Vishniac: The specifity of a diphosphopyridine nucleotide linked hydrogenase. Biochim. biophys. Acta (Amst.) 17, 153 (1955).

    Google Scholar 

  • Repaske, R.: The electron transport system of Hydrogenomonas eutropha. I. Diphosphopyridine nucleotide reduction by hydrogen. J. biol. Chem. 237, 1351 (1962).

    Google Scholar 

  • —, and C. Seward: FMN as a cofactor in the enzymatic reduction of DPN by hydrogen. Biochem. biophys. Res. Commun. 2, 397 (1960).

    Google Scholar 

  • Rose, I. A., and S. Ochoa: Phosphorylation by particulate preparations of Azotobacter vinelandii. J. biol. Chem. 220, 307 (1956).

    Google Scholar 

  • Sadana, J. C., and A. V. Jagannathan: Purification and properties of the hydrogenase of Desulfovibrio desulfuricans. Biochim. biophys. Acta (Amst.) 19, 440 (1956).

    Google Scholar 

  • —, and A. V. Morey: Purification and properties of the hydrogenase of Desulfovibrio desulfuricans. Biochim. biophys. Acta (Amst.) 50, 153 (1961).

    Google Scholar 

  • San Pietro, A.: Assay and properties of hydrogenases. In S. P. Colowick and N. O. Kaplan: Methods in enzymology II, p. 861. New York: Academic Press 1955.

    Google Scholar 

  • Schindler, J.: Die Synthese von Poly-β-hydroxybuttersäure durch Hydrogenomonas H 16: Die zu β-Hydroxybutyryl-Coenzym A führenden Reaktionsschritte. Diss., Göttingen 1964.

  • Schlegel, H. G., H. Kaltwasser u. G. Gottschalk: Ein Submersverfahren zur Kultur wasserstoffoxydierender Bakterien: Wachstumsphysiologische Untersuchungen. Arch. Mikrobiol. 38, 209 (1961a).

    Google Scholar 

  • — u. R. Stellmach-Helwig: Quantitative Messungen über den CO2-Einbau an organotrophen Bakterien. Arch. Mikrobiol. 38, 55 (1961b).

    Google Scholar 

  • Schmidt, K., S. Liaaen Jensen u. H. G. Schlegel: Die Carotinoide der Thiorhodaceae. I. Okenon als Hauptcarotinoid von chromatium okenii Perty. Arch. Mikrobiol. 46, 117 (1963).

    Google Scholar 

  • Shug, A. L., P. B. Hamilton, and P. W. Wilson: Hydrogen and nitrogen fixation. In W. D. McElroy and B. Glass: Inorganic nitrogen metabolism, p. 344. Baltimore: The Johns Hopkins Press 1956.

    Google Scholar 

  • Tanenbaum, S. W.: The metabolism of Acetobacter peroxidans. II. Hydrogen activating and related enzymes. Biochim. biophys. Acta (Amst.) 21, 343 (1956).

    Google Scholar 

  • Vishniac, W., and P. A. Trudinger: Carbon dioxide fixation and substrate oxidation in chemosynthetic sulfur and hydrogen bacteria. In: Symposium on Autotrophy. Bact. Rev. 26, 168 (1962).

    Google Scholar 

  • Wilde, E.: Untersuchungen über Wachstum und Speicherstoffsynthese von Hydrogenomonas. Arch. Mikrobiol. 43, 109 (1962).

    Google Scholar 

  • Wittenberger, C. L. and R. Repaske: Studies on hydrogen oxidation in cell-free extracts of Hydrogenomonas eutropha. Biochim. biophys. Acta (Amst.) 47, 542 (1961).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Auszug aus der gleichlautenden Dissertation der mathematisch-naturwissen-schaftlichen Fakultät der Universität Göttingen 1965.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eberhardt, U. Über das Wasserstoff aktivierende System von Hydrogenomonas H16. Archiv. Mikrobiol. 53, 288–302 (1966). https://doi.org/10.1007/BF00446675

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00446675

Navigation