Archives of Microbiology

, Volume 112, Issue 1, pp 61–67 | Cite as

Isolation and characterization of disc-shaped phycobilisomes from the red alga rhodella violacea

  • Klaus P. Koller
  • W. Wehrmeyer
  • H. Schneider


Disc-shaped phycobilisomes were purified from Triton X100 treated cell homogenates of the unicellular marine red alga, Rhodella violacea. Their absorption spectrum had principal maxima at 544 and 568 nm (B-phycoerythrin), 624 nm (C-phycocyanin) and a distinct shoulder at 652 nm (allophycocyanin). Intermolecular energy transfer within the phycobilisomes was clearly demonstrated by fluorescence data. Excited at 546 nm intact phycobilisomes showed a main fluorescence emission maximum at 665 nm, a minor one at 577 nm and a shoulder at 730 nm.

Dissociated phycobilisomes revealed a composition of 58% B-phycoerythrin, 25% C-phycocyanin and 17% allophycocyanin under the cultural conditions used. Analytical methods resolved no other components than phycobiliproteins. In addition to the defined C-phycocyanin and two isoproteins of B-phycoerythrin a stable heterogeneous aggregate of B-phycoerythrin/C-phycocyanin was separated in considerable amounts.

In the electron microscope negatively stained phycobilisomes appeared as elliptical aggregates having dimensions slightly above the values found in ultrathin sections and a detailed subunit structure. All observations and data suggest a new rhodophytan phycobilisome type in Rhodella violacea.

Key words

Phycobilisomes Isolation methods Phycobiliproteins Accessory photosynthetic pigments Rhodella violacea Rhodophyceae 











concentration (mg/ml)




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Cohen-Bazire, G., Lefort-Tran, M.: Fixation of phycobiliproteins to photosynthetic membranes by glutaraldehyde. Arch. Mikrobiol. 71, 245–257 (1970)Google Scholar
  2. Evans, E. L., Allen, M. M.: Phycobilisomes in Anacystis nidulans. J. Bact. 113, 403–408 (1973)Google Scholar
  3. Gantt, E.: Phycobilisomes: Light-harvesting pigment complexes. Bioscience 25, 781–788 (1975)Google Scholar
  4. Gantt, E., Conti, S. F.: Phycobiliprotein localization in algae. Brookhaven Symp. Biol. 19, 393–405 (1967)Google Scholar
  5. Gantt, E., Edwards, M. R., Conti, S. F.: Ultrastructure of Porphyridium aerugineum a blue-green colored Rhodophytan. J. Phycol. 4, 65–71 (1968)Google Scholar
  6. Gantt, E., Lipschultz, C. A.: Phycobilisomes of Porphyridium cruentum I. Isolation. J. Cell Biol. 54, 313–324 (1972)Google Scholar
  7. Gantt, E., Lipschultz, C. A.: Energy transfer in phycobilisomes from phycoerythrin to allophycocyanin. Biochim. biophys. Acta (Amst.) 292, 858–861 (1973)Google Scholar
  8. Gantt, E., Lipschultz, C. A.: Phycobilisomes of Porphyridium cruentum: Pigment analysis. Biochemistry 13, 2960–2966 (1974)Google Scholar
  9. Gray, B. H., Gantt, E.: Spectral properties of phycobilisomes and phycobiliproteins from the blue-green alga Nostoc sp. Photochem. Photobiol. 21, 121–128 (1975)Google Scholar
  10. Gray, B. H., Lipschultz, C. A., Gantt, E.: Phycobilisomes from a blue-green alga Nostoc species. J. Bact. 116, 471–478 (1973)Google Scholar
  11. Koller, K. P., Wehrmeyer, W.: Isolierung und Charakterisierung der Biliproteide von Rhodella violacea (Bangiophycidae). Arch. Microbiol. 100, 253–270 (1974)Google Scholar
  12. Koller, K. P., Wehrmeyer, W.: B-phycoerythrin from Rhodella violacea. Characterization of two isoproteins. Arch. Microbiol. 104, 255–261 (1975)Google Scholar
  13. Lee, J. J., Berns, D. S.: Protein aggregation. Studies of larger aggregates of C-phycocyanin. Biochem. J. 110, 457–464 (1968)Google Scholar
  14. Mohanty, P., Braun, B. Z., Govindjee, Thornber, J. P.: Chlorophyll fluorescence characteristics of system I chlorophyll aprotein complex and system II particles at room and liquid nitrogen temperature. Plant & Cell Physiol. 13, 81–91 (1972)Google Scholar
  15. Stegemann, H., Francksen, H., Macko, V.: Potato proteins: Genetic and physiological changes, evaluated by one-and two-dimensional PAA-gel-techniques. Z. Naturforsch. 28c, 722–732 (1973)Google Scholar
  16. Wehrmeyer, W.: Elektronenmikroskopische Untersuchung zur Feinstruktur von Porphyridium violaceum (Kornmann) mit Bemerkungen über seine taxonomische Stellung. Arch. Mikrobiol. 75, 121–139 (1971)Google Scholar
  17. Wehrmeyer, W., Schneider, H.: Elektronenmikroskopische Untersuchungen zur reversiblen Veränderung der Chloroplastenfeinstruktur von Rhodella violacea bei Stickstoffmangel. Biochem. Physiol. Pfl. 168, 519–532 (1975)Google Scholar
  18. Wildman, R. B., Bowen, C. C.: Phycobilisomes in blue-green algae. J. Bact. 117, 866–881 (1974)Google Scholar
  19. Wrigley, C.: Gel electrofocusing—a technique for analysing multiple protein samples by isoelectric focusing. Sci. Tools 15, 17–23 (1968)Google Scholar
  20. Vernotte, C.: Séparation et caractérisation spectroscopique du monomère et des polymères de la C-phycocyanine. Photochem. Photobiol. 14, 163–173 (1971)Google Scholar
  21. Vesterberg, C.: Staining of protein zones after isoelectric focusing in polyacrylamide gels. Biochim. biophys. Acta (Amst.) 243, 345–348 (1971)Google Scholar
  22. Zilinskas, B. A., Gantt, E.: Evidence for allophycocyanin aggregation in phycobilisomes. 4th Annual Meeting Photobiol. Soc. Amer., Denver, Abstract, p. 94 (1976)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Klaus P. Koller
    • 1
  • W. Wehrmeyer
    • 1
  • H. Schneider
    • 1
  1. 1.Fachbereich Biologic-Botanik der Philipps-Universität MarburgMarburg/LahnGermany

Personalised recommendations