Archives of Microbiology

, Volume 111, Issue 1–2, pp 85–91 | Cite as

Ammonium uptake and metabolism by nitrogen fixing bacteria

II. Klebsiella pneumoniae
  • D. Kleiner
Article

Abstract

The primary steps of N2, ammonia and nitrate metabolism in Klebsiella pneumoniae grown in a continuous culture are regulated by the kind and supply of the nitrogenous compound. Cultures growing on N2 as the only nitrogen source have high activities of nitrogenase, unadenylated glutamine synthetase and glutamate synthase and low levels of glutamate dehydrogenase. If small amounts of ammonium salts are added continuously, initially only part of it is absorbed by the organisms. After 2–3 h complete absorption of ammonia against an ammonium gradient coinciding with an increased growth rate of the bacteria is observed. The change in the extracellular ammonium level is paralleled by the intracellular glutamine concentration which in turn regulates the glutamine synthetase activity. An increase in the degree of adenylation correlates with a repression of nitrogenase synthesis and an induction of glutamate dehydrogenase synthesis. Upon deadenylation these events are reversed.—After addition of nitrate ammonia appears in the medium, probably due to the action of a membrane bound dissimilatory nitrate reductase.—Addition of dinitrophenol causes transient leakage of intracellular ammonium into the medium.

Key words

Ammonium metabolism Ammonium transport Glutamine synthetase Nitrogenase Glutamate synthase Glutamate dehydrogenase Nitrate reductase (dissimilatory) Klebsiella pneumoniae 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bishop, P. E., McParland, R. H., Evans, H. J.: Inhibition of the adenylylation of glutamine synthetase by methionine sulfone during nitrogenase derepression. Biochem. biophys. Res. Commun. 67, 774–781 (1975)Google Scholar
  2. Brenchley, J. E., Prival, M. J., Magasanik, B.: Regulation of the synthesis of enzymes responsible for glutamate formation in Klebsiella aerogenes. J. biol. Chem. 248, 6122–6128 (1973)Google Scholar
  3. Cleland, W. W.: Steady state kinetics. Enzymes 2, 1–65 (1970)Google Scholar
  4. Costerton, J. W., Ingram, J. M., Cheng, K.-J.: Structure and function of the cell envelope of gram-negative bacteria. Bact. Rev. 38, 87–110 (1974)Google Scholar
  5. Foor, F., Jansen, K. A., Magasanik, B.: Regulation of synthesis of glutamine synthetase by adenylylated glutamine synthetase. Proc. nat. Acad. Sci. (Wash.) 72, 4844–4848 (1975)Google Scholar
  6. Gancedo, C., Holzer, H.: Enzymatic inactivation of glutamine synthetase in enterobacteriaceae. Europ. J. Biochem. 4, 190–192 (1968)Google Scholar
  7. Goa, J.: A microbiuret method for protein determination. Determination of tatal protein in cerebrospinal fluid. Scand. J. clin. Lab. Invest. 5, 218–222 (1953)Google Scholar
  8. Grant, W. D., Sutherland, I. W., Wilkinson, J. F.: Exopolysaccharide colanic acid and its occurrence in the enterobacteriaceae. J. Bact. 100, 1187–1193 (1969)Google Scholar
  9. Hardy, R. W. F., Knight, E., Jr.: Reductant-dependent adenosine triphosphatase of nitrogen-fixing extracts of Azotobacter vinelandii. biochim. biophys. Acta (Amst.) 122, 520–531 (1966)Google Scholar
  10. Harold, F. M.: Conservation and transformation of energy by bacterial membranes. Bact. Rev. 36, 172–230 (1972)Google Scholar
  11. Harold, F. M., Baarda, J. R.: Inhibition of membrane transport in Streptococcus faecalis by uncouplers of oxidative phosphorylation and its relationship to proton conduction. J. Bact. 96, 2025–2034 (1968)Google Scholar
  12. Harold, F. M., Pavlasová, E., Baarda, J. R.: A transmembrane pH gradient in Streptococcus faecalis: Origin, and dissipation by proton conductors and N,N′-dicyclohexylcarbodiimide. Biochim. biophys. Acta (Amst.) 196, 235–244 (1970)Google Scholar
  13. Holzer, H., Duntze, W.: Metabolic regulation by chemical modification of enzymes. Ann. Rev. Biochem. 40, 345–374 (1971)Google Scholar
  14. Fleiner, D.: Quantitative relations for the repression of nitrogenase synthesis in Azotobacter vinelandii by ammonia. Arch. Microbiol. 101, 153–159 (1974)Google Scholar
  15. Kleiner, D.: Ammonium uptake by nitrogen fixing bacteria. I. Azotobacter vinelandii. Arch. Microbiol. 104, 163–169 (1975)Google Scholar
  16. Kováč, L., Kužela, Š.: Effect of uncopuling agents and azide on the synthesis of β-galactosidase in aerobically and anaerobically, grown Escherichia coli. Biochim. biophys. Acta (Amst.) 127, 355–365 (1966)Google Scholar
  17. Magasanik, B., Prival, M. J., Brenchley, J. E., Tyler, B. M., De-Leo, A. B., Streicher, S. L., Bender, R. A., Paris, C. G.: Glutamine synthetase as a regulator of enzyme synthesis. Curr. Top. Cell. Reg. 8, 119–138 (1974)Google Scholar
  18. Mahl, M. C., Wilson, P. W.: Nitrogen fixation by cell-free extracts from Klebsiella pneumoniae. Canad. J. Microbiol. 14, 33–38 (1968)Google Scholar
  19. Marier, J. R., Boulet, M.: Direct determination of citric acid in milk with an improved pyridine-acetic anhydride method. J. Dairy Sci. 41, 1683–1692 (1958); ref. in Anal. Abstr. 6, 3762 (1959)Google Scholar
  20. Meers, J. J., Tempest, D. W., Brown, C. M.: “Glutamine(amide): 2-oxoglutarate amino transferase oxido-reductase (NADP)”, an enzyme involved in the synthesis of glutamate by some bacteria. J. gen. Microbiol. 64, 187–194 (1970)Google Scholar
  21. Mickelson, M. N.: Effect of uncoupling agents and respiratory inhibitors on the growth of Streptococcus agalactiae. J. Bact. 120, 733–740 (1974)Google Scholar
  22. Nagatani, H., Shimizu, M., Valentine, R. C.: The mechanism of ammonia assimilation in nitrogen fixing bacteria. Arch. Microbiol. 79, 164–175 (1971)Google Scholar
  23. Pareijko, R. A., Wilson, P. W.: Regulation of nitrogenase synthesis by Klebsiella pneumoniae. Canad. J. Microbiol. 16, 681–685 (1970)Google Scholar
  24. Pavlasova, E., Harold, F. M.: Energy coupling in the transport of β-galactoside by Escherichia coli: Effect of proton conductors. J. Bact. 98, 198–204 (1969)Google Scholar
  25. Pengra, R. M., Wilson, P. W.: Physiology of nitrogen fixation by Aerobacter aerogenes J. Bact. 75, 21–25 (1958)Google Scholar
  26. Riebeling, V., Thauer, R. K., Jungermann, K.: The internal-alkaline pH gradient, sensitive to uncoupler and ATPase inhibitor, in growing Clostridium pasteurianum. Europ. J. Biochem. 55, 445–453 (1975)Google Scholar
  27. Schutt, H., Holzer, H.: Biological function of the ammonia-induced inactivation of glutamine synthetase in Escherichia coli. Europ. J. Biochem. 26, 68–72 (1972)Google Scholar
  28. Shanmugam, K. T., Chan, I., Morandi, C.: Regulation of nitrogen fixation. Nitrogenase-derepressed mutants of Klebsiella pneumoniae. Biochim. biophys. Acta (Amst.) 408, 101–111 (1975)Google Scholar
  29. Shapiro, B. M., Stadtman, E. R.: Glutamine synthetase (Escherichia coli). Meth. Enzymol. 17, 910–922 (1972)Google Scholar
  30. Stadtman, E. R., Ginsburg, A., Ciardi, J. E., Yeh, J., Hennig, S. B., Shapiro, B. M.: Multiple molecular forms of glutamine synthetase produced by enzyme catalyzed adenylylation and deadenylylation reactions. Advanc. Enzyme Reg. 8, 99–118 (1970)Google Scholar
  31. Streicher, S. L., Shanmugam, K. T., Ausubel, F., Morandi, C., Goldberg, R. B.: Regulation of nitrogen fixation in Klebsiella pneumoniae: Evidence for glutamine synthetase as a regulator of nitrogenase synthesis. J. Bact. 120, 815–821 (1974)Google Scholar
  32. Tubb, R. S.: Glutamine synthetase and ammonium regulation of nitrogenase synthesis in Klebsiella. Nature (Lond.) 251, 481–485 (1974)Google Scholar
  33. Tubb, R. S., Postgate, J. R.: Control of nitrogenase synthesis in Klebsiella pneumoniae. J. gen. Microbiol. 79, 103–117 (1973)Google Scholar
  34. Van't Riet, J., Planta, R. J.: Purification, structure and properties of the respiratory nitrate reductase of Klebsiella aerogenes. Biochim. biophys. Acta (Amst.) 379, 81–94 (1975)Google Scholar
  35. Yoch, D. C., Pengra, R. M.: Effect of amino acids on the nitrogenase system of Klebsiella pneumoniae. J. Bact. 92, 618–622 (1966)Google Scholar
  36. Zumft, W. G., Mortenson, L. E.: The nitrogen-fixing complex of bacteria. Biochim. biophys. Acta (Amst.) 416, 1–52 (1975)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • D. Kleiner
    • 1
  1. 1.Lehrstuhl Biochemie am Chemischen Laboratorium der UniversitätFreiburg i. Br.Germany

Personalised recommendations