Skip to main content
Log in

The correlation between the protein composition of cytoplasmic membranes and the formation of nitrate reductase A, chlorate reductase C and tetrathionate reductase in Proteus mirabilis wild type and some chlorate resistant mutants

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Three genotypically different chlorate resistant mutants, chl I, chl II and chl III, appeared to lack completely nitrate reductase A, chlorate reductase C and tetrathionate reductase activity. Fumarate reductase is only partially affected in chl I and chl III and unaffected in chl II. Formate dehydrogenase is only partially diminished in chl II, hydrogenase is diminished in chl I and chl II and completely absent in chl III.

Subunits of nitrate reductase A, chlorate reductase C and tetrathionate reductase have been identified in protein profiles of purified cytoplasmic membranes from the wild type and the three mutant strains, grown under various conditions. Only the presence and absence of the largest subunits of these enzymes appeared to be correlated with their repression and derepression in the wild type membranes. On the cytoplasmic membranes of the chl I and chl III mutants these subunits lack for the greater part. In the chl II mutant, however, these subunits are inserted in the membrane all together after anaerobic growth with or without nitrate.

A model for the repression/derepression mechanism for the reductases has been proposed. It includes repression by cytochrome b components, whereas the redox-state of the nitrate reductase A molecule itself is also involved in its derepression under anaerobic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Van der Beek, E. G.: Oxidative phosphorylation and electron transport in Proteus mirabilis. Ph. D. Thesis, Amsterdam, Vrije Universiteit (1976)

    Google Scholar 

  • Van der Beek, E. G., Oltmann, L. F., Stouthamer, A. H.: Fumarate reduction in Proteus mirabilis. Arch. Microbiol. 110, 195–206 (1976)

    Google Scholar 

  • Burke, K. A., Lascelles, J.: Nitrate reductase activity in hemedeficient mutants of Staphylococcus aureus. J. Bact. 126, 225–231 (1976)

    Google Scholar 

  • Gest, H., Peck, H. D.: A study of the hydrogenlyase reaction with systems derived from normal and anaerogenic coli-aerogenes bacteria. J. Bact. 70, 326–334 (1955)

    Google Scholar 

  • De Graaff, J., Barendsen, W., Stouthamer, A. H.: Mapping of chlorate-resistant mutants of Citrobacter freundii by deletion and complementation analysis. Molec. gen. Genet. 121, 259–269 (1973)

    Google Scholar 

  • De Groot, G. N., Stouthamer, A. H.: Regulation of reductase formation in Proteus mirabilis. I. Formation of reductases and enzymes of the formic hydrogenlyase complex in the wild type and chlorate-resistant mutants. Arch. Mikrobiol. 66, 220–233 (1969)

    Google Scholar 

  • De Groot, G. N., Stouthamer, A. H.: Regulation of reductase formation in Proteus mirabilis. II. Influence of growth with azide and of haem deficiency on nitrate reductase formation. Biochim. biophys. Acta (Amst.) 208, 414–427 (1970a)

    Google Scholar 

  • De Groot, G. N., Stouthamer, A. H.: Regulation of reductase formation in Proteus mirabilis. III. Influence of oxygen, nitrate and azide on thiosulfate reductase and tetrathionate reductase formation. Arch. Mikrobiol. 74, 326–339 (1970b)

    Google Scholar 

  • Guest, J. R.: Biochemical and genetic studies with nitrate reductase C-gene mutants of Escherichia coli. Molec. gen. Genet. 105, 285–297 (1969)

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurements with the Folin-phenol reagent. J. biol. Chem. 193, 265–275 (1951)

    Google Scholar 

  • MacGregor, C. H.: Solubilization of Escherichia coli nitrate reductase by a membrane-bound protease. J. Bact. 121, 1102–1110 (1975a)

    Google Scholar 

  • MacGregor, C. H.: Anaerobic cytochrome b i in Escherichia coli: Association with and regulation of nitrate reductase. J. Bact. 121, 1111–1116 (1975b)

    Google Scholar 

  • MacGregor, C. H.: Synthesis of nitrate reductase components in chlorate-resistant mutants of Escherichia coli. J. Bact. 121, 1117–1121 (1975c)

    Google Scholar 

  • MacGregor, C. H.: Biosynthesis of membrane-bound nitrate reductase in Escherichia coli: Evidence for a soluble precursor. J. Bact. 126, 122–131 (1976)

    Google Scholar 

  • Oltmann, L. F., Reijnders, W. N. M., Stouthamer, A. H.: Characterization of purified nitrate reductase A and chlorate reductase C from Proteus mirabilis. Arch. Microbiol. 111, 25–35 (1976)

    Google Scholar 

  • Oltmann, L. F., Schoenmaker, G. S., Stouthamer, A. H.: Solubilization and purification of a cytoplasmic membrane bound enzyme catalyzing tetrathionate and thiosulphate reduction in Proteus mirabilis. Arch. Microbiol. 98, 19–30 (1974)

    Google Scholar 

  • Oltmann, L. F., Stouthamer, A. H.: Purification of cytoplasmic membranes and outer membranes from Proteus mirabilis. Arch. Mikrobiol. 93, 311–325 (1973)

    Google Scholar 

  • Oltmann, L. F., Stouthamer, A. H.: Reduction of tetrathionate, trithionate and thiosulphate, and oxidation of sulphide in Proteus mirabilis. Arch. Microbiol. 105, 135–142 (1975)

    Google Scholar 

  • Peck, H. D., Gest, H.: A new procedure for assay of bacterial hydrogenases. J. Bact. 71, 71–80 (1956)

    Google Scholar 

  • Pichinoty, F.: Répression par l'oxygène de la biosynthèse de la thiosulfate réductase de Proteus vulgaris. Experientia (Basel) 18, 501–506 (1962)

    Google Scholar 

  • Piéchaud, M., Puig, J., Pichinoty, F., Azoulay, E., Le Minor, L.: Mutations affectant la nitrate-réductase A et d'autres enzymes bactériennes d'oxydo-réduction. Étude préliminaire. Ann. Inst. Pasteur 112, 24–37 (1967)

    Google Scholar 

  • Ruiz-Herrera, J., Showe, M. K., DeMoss, J. A.: Nitrate reductase complex of Escherichia coli K 12: Isolation and characterization of mutants unable to reduce nitrate. J. Bact. 97, 1291–1297 (1969)

    Google Scholar 

  • Simoni, R. D., Shallenberger, M. K.: Coupling of energy to active transport of amino acids in Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 69, 2663–2667 (1972)

    Google Scholar 

  • Stouthamer, A. H.: Nitrate reduction in Aerobacter aerogenes. II. Characterization of mutants blocked in the reduction of nitrate and chlorate. Arch. Mikrobiol. 56, 76–80 (1967)

    Google Scholar 

  • Stouthamer, A. H.: A genetical and biochemical study of chlorateresistant mutants of Salmonella typhimurium. Antonie v. Leeuwenhoek 35, 505–521 (1969)

    Google Scholar 

  • Stouthamer, A. H.: Biochemistry and genetics of nitrate reductase in bacteria. Adv. Microbial Physiol. 14, 315–375 (1976)

    Google Scholar 

  • Venables, W. A., Wimpenny, J. W. T., Cole, J. A.: Enzymic properties of a mutant of Escherichia coli K 12 lacking nitrate reductase. Arch. Mikrobiol. 63, 117–121 (1968)

    Google Scholar 

  • Weber, K., Osborn, M.: The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J. biol. Chem. 244, 4406–4412 (1969)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oltmann, L.F., Reijnders, W.N.M. & Stouthamer, A.H. The correlation between the protein composition of cytoplasmic membranes and the formation of nitrate reductase A, chlorate reductase C and tetrathionate reductase in Proteus mirabilis wild type and some chlorate resistant mutants. Arch. Microbiol. 111, 37–43 (1976). https://doi.org/10.1007/BF00446547

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00446547

Key words

Navigation