Archives of Microbiology

, Volume 111, Issue 1–2, pp 25–35 | Cite as

Characterization of purified nitrate reductase A and chlorate reductase C from Proteus mirabilis

  • L. F. Oltmann
  • W. N. M. Reijnders
  • A. H. Stouthamer


Nitrate reductase A has been solubilized from purified cytoplasmic membranes by extraction with terl-amyl alcohol. The resulting aqueous solution contained monomeric reductase which polymerized slowly to dimers and tetramers with sedimentation coefficients of respectively 10.5, 16 and 23 Svedbergunits. The polymerization could be stopped to some extent by addition of a small amount of Triton X-100. These distinct entities of nitrate reductase A were separable on electro-focusing, DEAE-column chromatography and polyacrylamide gel electrophoresis, and have been proved to consist of similar subunits with molecular weights of 104000, 63000, and 56000 daltons. The molecular weights of monomeric nitrate reductase A was found to be about 240000 daltons.

Chlorate reductase C has been solubilized by a similar procedure, resulting in only monomeric enzyme. Chlorate reductase C exhibited a sedimentation coefficient of 7.7 Svedbergunits, an isoelectric point of pH=4.55 and a molecular weight of approx. 180000 daltons. It was found to consist of three subunits with molecular weights of 75000, 63000 and 56000 daltons. The latter two subunits are most probably common in nitrate reductase A and chlorate reductase C.

Key words

Nitrate reductase Chlorate reductase Anaerobic Respiration Proteus mirabilis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Chance, B., Maehly, A. C.: Assay of catalases and peroxidases. In: Methods in enzymology, Vol. II (S. Colowick, N. Kaplan, eds.), p. 764. New York: Academic Press 1955Google Scholar
  2. Clegg, R. A.: Purification and some properties of nitrate reductase (EC from Escherichia coli K12. Biochem. J. 153, 533–541 (1976)Google Scholar
  3. Determann, H., Michel, W.: The correlation between molecular weight and elution behaviour in the gel chromatography of proteins. J. Chromatogr. 25, 303–313 (1966)Google Scholar
  4. Enoch, H. G., Lester, R. L.: The role of a novel cytochrome b-containing nitrate reductase and quinone in the in vitro reconstitution of formate-nitrate reductase activity of E. coli. Biochem. biophys. Res. Commun. 61, 1234–1240 (1974)Google Scholar
  5. De Groot, G. N., Stouthamer, A. H.: Regulation of reductase formation in Proteus mirabilis. I. Formation of reductases and enzymes of the formic hydrogenlyase complex in the wild type and in chlorate-resistant mutants. Arch. Mikrobiol. 66, 220–233 (1969)Google Scholar
  6. De Groot, G. N., Stouthamer, A. H.: Regulation of reductase formation in Proteus mirabilis. III. Influence of oxygen, nitrate and azide on thiosulfate reductase and tetrathionate redutase formation. Arch. Mikrobiol. 74, 326–339 (1970)Google Scholar
  7. Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin phenol reagent. J. biol. Chem. 193, 265–275 (1951)Google Scholar
  8. Lund, K., DeMoss, J. A.: Association-dissociation behaviour and subunit structure of heat-released nitrate reductase from Escherichia coli. J. biol. Chem. 251, 2207–2216 (1976)Google Scholar
  9. MacGregor, C. H.: Solubilization of Escherichia coli nitrate reductase by a membrane-bound protease. J. Bact. 121, 1102–1110 (1975a)Google Scholar
  10. MacGregor, C. H.: Anaerobic cytochrome b, in Escherichia coli: association with and regulation of nitrate reductase. J. Bact. 121, 1111–1116 (1975b)Google Scholar
  11. MacGregor, C. H.: Biosynthesis of membrane-bound nitrate reductase in Escherichia coli: Evidence for a soluble precursor. J. Bact. 126, 122–131 (1976)Google Scholar
  12. MacGregor, C. H., Schnaitman, C. A., Normansell, D. E.: Purification and properties of nitrate reductase from Escherichia coli K12. J. biol. Chem. 249, 5321–5327 (1974)Google Scholar
  13. Martin, R. G., Ames, B. N.: A method for determining the sedimentation behaviour of enzymes: Application to protein mixtures. J. biol. Chem. 236, 1372–1379 (1961)Google Scholar
  14. Maurer, H. R.: Disk-Electrophorese. Berlin: W. de Gruyter 1968Google Scholar
  15. Nachbar, M. S., Winkler, W. J., Salton, M. R. J.: The effect of aliphatic alcohols upon the dissociation of Micrococcus lysodeikticus membrane lipids and proteins. Biochim. biophys. Acta (Amst.) 274, 83–94 (1972)Google Scholar
  16. Oltmann, L. F., Reijnders, W. N. M., Stouthamer, A. H.: The correlation between the protein composition of cytoplasmic membranes and the formation of nitrate reductase A, chlorate reductase C and tetrathionate reductase in Proteus mirabilis wild type and some chlorate resistant mutants. Arch. Microbiol. 111, 37–43 (1976)Google Scholar
  17. Oltmann, L. F., Schoenmaker, G. S., Stouthamer, A. H.: Solubilization and purification of a cytoplasmic membrane bound enzyme catalyzing tetrathionate and thiosulphate reduction in Proteus mirabilis. Arch. Microbiol. 98, 19–30 (1974)Google Scholar
  18. Oltmann, L. F., Stouthamer, A. H.: Purification of cytoplasmic membranes and outer membranes from Proteus mirabilis. Arch. Mikrobiol. 93, 311–325 (1973)Google Scholar
  19. Peck, H. D., Gest, H.: A new procedure for assay of bacterial hydrogenases. J. Bact. 71, 71–80 (1956)Google Scholar
  20. Pichinoty, F.: Répression par l'oxygène de la biosynthèse de la thiosulfate réductase de Proteus vulgaris. Experientia (Basel) 18, 501–506 (1962)Google Scholar
  21. Pichinoty, F.: Recherche des nitrate-réductases bactériènnes A et B: Méthodes. Bull. Soc. Chim. Biol. 47, 1526–1528 (1965)Google Scholar
  22. Piéchaud, M., Puig, J., Pichinoty, F., Azoulay, E., Le Minor, L.: Mutations affectant la nitrate-réductase A et d'autres enzymes bactériennes d'oxydo-réduction. Etude préliminaire. Ann. Inst. Pasteur 112, 24–37 (1967)Google Scholar
  23. Schnaitman, C. A.: Solubilization of the cytoplasmic membrane of Escherichia coli by Triton X-100. J. Bact. 108, 545–552 (1971)Google Scholar
  24. Stouthamer, A. H.: Nitrate reduction in Aerobacter aerogenes. I. Isolation and properties of mutant strains blocked in nitrate assimilation and resistant against chlorate. Arch. Mikrobiol. 56, 68–75 (1967)Google Scholar
  25. Stouthamer, A. H.: Biochemistry and genetics of nitrate reductase in bacteria. Advanc. Microbial Physiol. 14, 315–375 (1976)Google Scholar
  26. Van't Riet, J., Planta, R. J.: Purification and some properties of the membrane-bound respiratory nitrate reductase of Aerobacter aerogenes. FEBS Letters 5, 249–252 (1969)Google Scholar
  27. Van't Riet, J., Planta, R. J.: Purification, structure and properties of the respiratory nitrate reductase of Klebsiella aerogenes. Biochim. biophys. Acta (Amst.) 379, 81–94 (1975)Google Scholar
  28. Van't Riet, J., Stouthamer, A. H., Planta, R. J.: Regulation of nitrate assimilation and nitrate respiration in Aerobacter aerogenes. J. Bact. 96, 1455–1464 (1968)Google Scholar
  29. Weber, K., Osborn, M.: The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J. biol. Chem. 244, 4406–4412 (1969)Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • L. F. Oltmann
    • 1
  • W. N. M. Reijnders
    • 1
  • A. H. Stouthamer
    • 1
  1. 1.Department of Microbiology, Biological LaboratoryFree UniversityAmsterdam-BuitenveldertThe Netherlands

Personalised recommendations