Advertisement

Archives of Microbiology

, Volume 106, Issue 3, pp 251–258 | Cite as

The regulation of carbohydrate metabolism in Klebsiella aerogenes NCTC 418 organisms, growing in chemostat culture

  • O. M. Neijssel
  • D. W. Tempest
Article

Abstract

Klebsiella aerogenes NCTC 418 was grown in chemostat cultures (D=0.17 hr-1; pH 6.8; 35° C) that were, successively, carbon-, sulphate-, ammonia-, and phosphate-limited, and which contained as the sole carbon-substrate first glucose, then glycerol, mannitol and lactate. Quantitative analyses of carbon-substrate used and products formed allowed carbon balances to be constructed and direct comparisons to be made of the effciency of substrate utilization. With all sixteen cultures, carbon recoveries of better than 90% were obtained.

Optimum utilization of the carbon substrate was invariably found with the carbon-limited cultures, the sole products being organisms and carbon dioxide. But the extent to which excess substrate was over-utilized varied markedly with both the nature of the growth-limitation and the identity of the carbon-substrate. In general, sulphate-, ammonia-, and phosphate-limited cultures utilized glycerol more efficiently than mannitol, mannitol better than lactate, and glucose least efficiently. Glucose-containing cultures also synthesized some extracellular polysaccharide.

When the carbon source was in excess, a range of acidic compounds generally were excreted. Sulphate-limited cultures, growing on glucose, excreted much pyruvate and acetate, whereas similarly-limited cultures growing on glycerol, mannitol or lactate produced only acetate. Ammonialimited cultures invariably excreted 2-oxoglutarate and acetate, whereas phosphate-limited cultures produced gluconic acid, 2-ketogluconic acid and acetate, when growing on glucose, but only acetate when growing on mannitol or lactate.

From the rates of substrate and oxygen consumption, and the rates of cell synthesis, yield values for both substrate and oxygen were calculated. These showed different trends, but were similar in being highest under carbon-limitation and substantially lower under all other limitations.

The physiological significance of these findings, and the probable nature of the regulatory mechanisms underlying “overflow metabolism” are discussed.

Key words

Klebsiella aerogenes Continuous culture Carbohydrate metabolism Overflow metabolism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alemohammad, M. M., Knowles, C. J.: Osmotically induced volume and turbidity changes of Escherichia coli due to salts, sucrose and glycerol, with particular reference to the rapid permeation of glycerol into the cell. J. gen. Microbiol 82, 125–142 (1974)Google Scholar
  2. Bergmeyer, H. U., Bernt, E.: α-Ketoglutarat, UV-spektro-photometrische Bestimmung. In: Methoden der enzymatischen Analyse, 3rd ed., Vol. II, H. U. Bergmeyer, ed., pp. 1624–1627. Weinheim: Verlag Chemie 1974Google Scholar
  3. Britten, R. J.: The concentration of small molecules within the microbial cell. In: Function and structure in microorganisms. Symp. Soc. gen. Microbiol. 15, 57–88 (1965)Google Scholar
  4. Calcott, P. H., Postgate, J. R.: On substrate accelerated death of Klebsiella aerogenes. J. gen. Microbiol. 70, 115–122 (1972)Google Scholar
  5. Calcott, P. H., Postgate, J. R.: The effects of β-galactosidase activity and cyclic AMP on lactose accelerated death. J. gen. Microbiol. 85, 85–90 (1974)Google Scholar
  6. Czok, R., Lamprecht, W.: Pyruvat, Phosphoenolpyruvat und d-Glycerat-2-phosphat. In: Methoden der enzymatischen Analyse, 3rd ed., Vol. II, H. U. Bergmeyer, ed., pp. 1491–1496, Weinheim: Verlag Chemie 1974Google Scholar
  7. Dawes, E. A., McGill, D. J., Midgley, M.: Analysis of fermentation products. In: Methods in microbiology, Vol. 6A, J. R. Norris, D. W. Ribbons, eds., pp. 53–216. London-New York: Academic Press 1971Google Scholar
  8. Dietzler, D. W., Leckie, M. P., Magnani, J. L.: Evidence that ATP exerts control of the rate of glucose utilization in the intact Escherichia coli cell by altering the cellular level of glucose-6-P, an intermediate known to inhibit glucose transport in vitro. Biochem. biophys. Res. Commun. 60, 622–628 (1974)Google Scholar
  9. Evans, C. G. T., Herbert, D., Tempest, D.W.: The continuous cultivation of micro-organisms. 2. Construction of a chemostat. In: Methods in microbiology, Vol. 2, J. R. Norris, D. W. Ribbons, eds., pp. 277–327. London-New York: Academic Press 1970Google Scholar
  10. Gunsalus, I. C., Shuster, C. W.: Energy-yielding metabolism in bacteria. In: The bacteria, Vol. II, Metabolism, I. C. Gunsalus, R. Y. Stanier, eds., pp. 1–58. London-New York: Academic Press 1961Google Scholar
  11. Gutmann, I., Wahlefeld, A. W.: l-Lactat, Bestimmung mit Lactatdehydrogenase und NAD. In: Methoden der enzymatischen Analyse, 3rd ed., Vol. II, H. U. Bergmeyer, ed., pp. 1510–1514. Weinheim: Verlag Chemie 1974Google Scholar
  12. Harrison, D. E. F., Pirt, S. J.: The influence of dissolved oxygen concentration on the respiration and glucose metabolism of Klebsiella aerogenes during growth. J. gen. Microbiol. 46, 193–211 (1967)Google Scholar
  13. Herbert, D., Phipps, P. J., Strange, R. E.: Chemical analysis of microbial cells. In: Methods in microbiology, Vol. 5B, J. R. Norris, D. W. Ribbons, eds., pp. 209–344. London-New York: Academic Press 1971Google Scholar
  14. Herbert, D., Phipps, P. J., Tempest, D. W.: The chemostat: design and instrumentation. Lab. Pract. 14, 1150–1161 (1965)Google Scholar
  15. Holme, T.: Glycogen formation in continuous culture of Escherichia coli. In: Continuous cultivation of microorganisms. A symposium, p. 67. Prague: Publ. House Czechoslov. Acad. Sci. 1958Google Scholar
  16. Holz, G., Bergmeyer, H. U.: Acetat Bestimmung mit Acetatkinase und Hydroxylamin. In: Methoden der enzymatischen Analyse, 3rd ed., Vol. II H. U. Bergmeyer, ed., pp. 1574–1578, Weinheim: Verlag Chemie 1974Google Scholar
  17. Kaback, H. R.: Regulation of sugar transport in isolated bacterial membrane preparations from Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 63, 724–731 (1969)Google Scholar
  18. Koch, A. L.: The adaptive responses of Escherichia coli to a feast and famine existence. In: Advances in microbial physiology, Vol. 6, A. H. Rose, J. F. Wilkinson, eds., pp. 147–218. London-New York: Academic Press 1971Google Scholar
  19. Kornberg, H. L., Smith, J.: Role of phosphofructokinase in the utilization of glucose by Escherichia coli. Nature (Lond.) 227, 44–46 (1970)Google Scholar
  20. de Ley, J.: Pathways of 5-ketogluconate catabolism in bacteria. Biochim. biophys. Acta (Amst.) 27, 652–653 (1958)Google Scholar
  21. Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin phenol reagent. J. biol. Chem. 193, 265–275 (1951)Google Scholar
  22. Matin, A., Konings, W. N.: Transport of lactate and succinate by membrane vesicles of Escherichia coli, Bacillus subtilis and a Pseudomonas species. Europ. J. Biochem. 34, 58–67 (1973)Google Scholar
  23. Nijssel, O. M., Hueting, S., Crabbendam, K. J., Tempest, D. W.: Dual pathways of glycerol assimilation in Klebsiella aerogenes NCIB 418. Their regulation and possible functional significance. Arch. Microbiol. 104, 83–87 (1975)Google Scholar
  24. Neijssel, O. M., Tempest, D. W.: Production of gluconic acid and 2-ketogluconic acid by Klebsiella aerogenes NCTC 418. Arch. Microbiol. (in press, 1976)Google Scholar
  25. Nelson, D. L., Kennedy, E. P.: Transport of magnesium by a repressible and a non-repressible system in Escherichia coli. Proc. nat. Acad. Sci. (Wash.) 69, 1091–1093 (1972)Google Scholar
  26. Pardee, A. B.: Crystallization of a sulfate-binding protein (permease) from Salmonella typhimurium. Science 156, 1627–1628 (1967)Google Scholar
  27. Pardee, A. B.: Membrane transport proteins. Science 162, 632–637 (1968)Google Scholar
  28. Piperno, J. R., Oxender, D. L.: Amino acid-binding protein released from Escherichia coli by osmotic shock. J. biol. Chem. 241, 5732–5734 (1966)Google Scholar
  29. Pirt, S. J.: The oxygen requirement of growing culture of an Aerobacter species, determined by means of the continuous culture technique. J. gen. Microbiol. 16, 59–75 (1957)Google Scholar
  30. Robinson, A., Tempest, D. W.: Phenotypic variability of the envelope proteins of Klebsiella aerogenes. J. gen. Microbiol. 78, 361–370 (1973)Google Scholar
  31. Stouthamer, A. H., Bettenhaussen, C. W.: Determination of the efficiency of oxidative phosphorylation in continuous cultures of Aerobacter aerogenes. Arch. Microbiol. 102, 187–192 (1975)Google Scholar
  32. Tanaka, S., Lerner, S. A., Lin, E. C. C.: Replacement of a phosphoenolpyruvate-dependent phosphotransferase by a nicotinamide adenine dinucleotide-linked dehydrogenase for the utilization of mannitol. J. Bact. 93, 642–648 (1967)Google Scholar
  33. Tanaka, S., Lin, E. C. C.: Two classes of pleiotropic mutants of Aerobacter aerogenes lacking components of a phosphoenolpyruvate-dependent phospho-transferase system. Proc. nat. Acad. Sci. (Wash.) 57, 913–919 (1967)Google Scholar
  34. Tempest, D. W., Meers, J. L., Brown, C. M.: Synthesis of glutamate in Aerobacter aerogenes by a hitherto unknown route. Biochem. J. 117 405–407 (1970a)Google Scholar
  35. Tempest, D. W., Meers, J. L., Brown, C. M.: Influence of environment on the content and composition of microbial free amino acid pools. J. gen. Microbiol. 64, 171–185 (1970b)Google Scholar
  36. Tempest, D. W., Meers, J. L., Brown, C. M.: Glutamate synthetase (GOGAT); a key enzyme in the assimilation of ammonia by prokaryotic organisms. In: The enzymes of glutamine metabolism, S. Prusiner, E. R. Stadtman, eds., pp. 167–182. New York-London: Academic Press 1973Google Scholar
  37. Tempest, D. W., Neijssel, O. M.: Microbial adaptation to low-nutrient environments. In: Proc. 6th Int. Symp. Continuous Culture of Micro-organisms. London: Society of Chemical Industry 1975 (in press)Google Scholar
  38. Umbarger, H. E.: Regulation of amino acid metabolism. Ann. Rev. Biochem. 38, 323–370 (1969)Google Scholar
  39. Willsky, G. R., Malamy, M. H.: The loss of the phoS periplasmic protein leads to a change in the specificity of a constitutive inorganic phosphate transport system in Escherichia coli. Biochem. biophys. Res. Commun. 60, 226–233 (1974)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • O. M. Neijssel
    • 1
  • D. W. Tempest
    • 1
  1. 1.Laboratorium voor MicrobiologieUniversiteit van AmsterdamAmsterdam

Personalised recommendations