, Volume 8, Issue 3, pp 211–219 | Cite as

Ecosystem contrasts in interaction with the planetary boundary layer 1)1)1)

  • Miller D. H. 


In many climatic regions the interface between the earth and the atmosphere consists of a mosaic of ecosystems, each possessing specific properties of absorbing and storing energy and matter. Large contrasts in these properties create differences in interface temperature and moisture, which, in combination with contrasts in roughness, produce differences in sensible and latent heat fluxes injected into the atmosphere, so that the boundary layer experiences rapid alterations to its structure and transport of energy and matter. In consequence, good data on fluxes from individual ecosystems and their contrasts are essential both to understanding the functioning of the boundary layer and energy/mass accounting at source and sink ecosystems.


Latent Heat Latent Heat Flux Planetary Boundary Layer Interface Temperature Glacial Erosion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aizenshtat, B.A.: The Heat Balance and Microclimate of Certain Landscapes in a Sandy Desert (G.S. Mitchell, transl.), U.S. Weather Bureau, Washington 1960, 90 pp.Google Scholar
  2. Aulitzky, H.: Grundlagen und Anwendung des vorläufigen Wind-Schnee-Ökogrammes. Forstl. Bundesversuchsanstalt mariabrunn, Mitt., 60, 763–834 (1963)Google Scholar
  3. Baumgartner, A.: Energetic bases for differential vaporization from forest and agricultural lands. In: Sopper, W.E., and Lull, H.W. (eds.), Forest Hydrology, pp. 381–389, Pergamon Press, Oxford 1967.Google Scholar
  4. Bill, R.G., jr., Sutherland, R.A., Bartholic, J.F., and Chen, E.: Observations of the convective plume of a lake under cold-air advective conditions. Bdy.-Layer Meteorol. 14, 543–556 (1978)CrossRefGoogle Scholar
  5. Brakke, T.W., Verma, S.B., and Rosenberg, N.J.: Local and regional components of sensible heat advection. J. Appl. Meteorol. 17, 955–963 (1978)CrossRefGoogle Scholar
  6. Cone, C.D., jr.,: Thermal soaring of birds. Am. Scientist 50, 180–209 (1962)Google Scholar
  7. Denmead, O.T.: Comparative micrometeorology of a wheat field and a forest of Pinus radiata. Agric. Meteorol. 6, 357–371 (1969)CrossRefGoogle Scholar
  8. de Vries, D.A.: The influence of irrigation on the energy balance and the climate near the ground. J. Meteorol. 16, 256–270 (1969)CrossRefGoogle Scholar
  9. Dozier, J., and Outcalt, S.: An approach toward energy balance simulation over rugged terrain. Geog. Analysis 11, 65–84 (1979)CrossRefGoogle Scholar
  10. Dzerdzeevskii, B.L. and Rauner, Iu.L.: Sostoianie i zadachi issledovaniia teplovo b balansa lesa. In: Teplovoi v Vodnoi Rezhim Zemnoi Poverkhnosti. Gidrometeoizdat, Leningrad 1962.Google Scholar
  11. Furman, R.W.: Wildfire zones on a mountain ridge. Ann. Assoc. Am. Geog. 68, 89–94 (1978)CrossRefGoogle Scholar
  12. Gay, L.W., and Fritschen, L.H.: An energy budget analysis of water use by saltcedar. Wat. Res. Res. 15, 1589–1592 (1979)CrossRefGoogle Scholar
  13. Hicks, B.B.: Eddy fluxes over a vinyard. Agric. Meteorol. 12, 203–215 (1973)CrossRefGoogle Scholar
  14. Holmes, R.M.: Meso-scale effects of agriculture and a large prairie lake on the atmospheric boundary layer. Agron. J. 62, 546–549 (1970)CrossRefGoogle Scholar
  15. Homen, T.: Der tägliche Wärmeumsatz im Boden und die Wärmestrahlung zwischen Luft und Erde. Acta Soc. Sci. Fennicae, 23, 3 (1897)Google Scholar
  16. Hori, T.: Studies on Fogs in Relation to Fog-preventing Forest. Tanne, Sapporo 1953. (Resume in D. H. Miller, Coastal fogs and clouds, Geog. Rev. 47, 591–594 (1957))Google Scholar
  17. Inoue, K.: Numerical experiments of effects of advection on CO2 environment and photosynthesis of crop fields. Tokyo, Nat. Inst. Agric. Sci. Bul. A 21 (1974)Google Scholar
  18. Khrgian, A.Kh.: Ocherki Razvitiia Meteorologii, vol. 2, ed. 2, Gidromet. Izdat. 428 pp., Leningrad 1959Google Scholar
  19. Koller, D.: The physiology of dormancy and survival of plants in desert environments. In: Dormancy and Survival. Sympos. Soc. Exptl. Biol. 23, 449–469 (1969)Google Scholar
  20. Kotliakov, V.M.: Snezhnyi Pokrov Zemli i Ledniki. Gidrometeor. Izdat., Leningrad 1968.Google Scholar
  21. Kreeb, K.: Die Schneeschmelze als phänalogischer Factor. Meteorol. Rdschau. 7, 48–49 (1954)Google Scholar
  22. Laikhtman, D.L.: Physics of the Boundary Layer of the Atmosphere. Israel Prog. Sci. Transl., 200 pp., Jerusalem 1964.Google Scholar
  23. Lee, R., and Baumgartner, A.: The topography and insolation climate of a mountainous forest area. Forest Sci. 12, 258–267 (1966)Google Scholar
  24. Mahrt, L. and Healds, R.C.: Nocturnal surface temperature distribution as remotely sensed from a low-flying aircraft. Agric. Meteorol. 28, 99–107 (1983)CrossRefGoogle Scholar
  25. Miess, M.: Vergleichende Darstellung von meteorologischen Messergebnissen und Wärmehaushaltsuntersuchungen an drei unterschiedlichen Standorten in Norddeutschland. Hannover, Tech. Univ., Inst. Meteor. Klimat., Ber. 2, 216 pp., 1968.Google Scholar
  26. Miller, D.H.: Snow Cover and Climate in the Sierra Nevada California. University of California Press, Publ. Geog. 11, 218 pp., Berkeley 1955.Google Scholar
  27. Miller, D.H.: The factor of scale: Ecosystem, landscape mosaic, and region. In: Sourcebook on the Environment, Hammond, A., Macinko, G., and Fairchild, W.B. (eds.), The University of Chicago Press, pp. 63–88, 1978.Google Scholar
  28. Miller, D.H.: Energy at the Surface of the Earth: An Introduction to the Energetics of Ecosystems, Academic Press, New York 1981.Google Scholar
  29. Munn, E.: Descriptive Micromeorology, pp. 107–117, Academic Press, New York 1966.Google Scholar
  30. Ng., E., and Miller, P.C.: Soil moisture relations in the Southern California chaparral. Ecology 61, 98–107 (1980)CrossRefGoogle Scholar
  31. Oberbauer, S.F., and Billings, W.D.: Drought tolerance and water use by plants along an alpine topographic gradient. Oecol. (Berl.) 50, 325–331 (1981)CrossRefGoogle Scholar
  32. Pédelaborde, P.: Le climat du Bassin Parisien. Essai d'une Methode rationelle de Climatologie physique. 2 vol. Libr. de Medicis, Paris 1957.Google Scholar
  33. Pennycuick, C.J.: The soaring flight of vultures. Sci. Am. 229, 6, 102–109 (1973)CrossRefGoogle Scholar
  34. Rouse, W.R.: Microclimatic changes accompanying burning in subarctic lichen woodland. Arct. Alp. Res. 8, 357–376 (1976)CrossRefGoogle Scholar
  35. Schlüter, H.: Biotische Diversität und ihr Regenerationsvermögen in der Landschaft. Peter. geog. Mitt. 124, 19–22 (1980)Google Scholar
  36. Scott, J.R., Tracy, C.R., and Pettus, D.: A biophysical analysis of daily and seasonal utilization of climate space by a montane snake. Ecology 63, 482–493 (1982)CrossRefGoogle Scholar
  37. Slanar, H.: Schneeabschmelzung im bewachsene Gelände. Meteorol. Z. 59, 423–416 (1942)Google Scholar
  38. Tabler, R.D., and Schmidt, R.A.: Weather conditions that determine snow transport distances at a site in Wyoming. Int. Assoc. Hydrol. Sci., Publ. 107, 118–127 (1973)Google Scholar
  39. Vogelmann, H.W.: Catastrophe on Camels Hump. Nat. Hist. 91, 11, 8–14 (1982)Google Scholar
  40. Yoshino, M.M., Tanaka, M., and Nakamura, K.: Formation of a cold air lake and its effects on agriculture. J. Nat. Disas. Sci. 3, 2, 1–14 (1981)Google Scholar

Copyright information

© D. Reidel Publishing Company 1984

Authors and Affiliations

  • Miller D. H. 
    • 1
  1. 1.Department of Geological and Geophysical SciencesUniversity of Wisconsin-MilwaukeeMilwaukeeUSA

Personalised recommendations