Archives of Microbiology

, Volume 115, Issue 3, pp 285–292 | Cite as

Anaerobic dechlorination and degradation of hexachlorocyclohexane isomers by anaerobic and facultative anaerobic bacteria

  • G. Jagnow
  • K. Haider
  • P. -Chr. Ellwardt


Screening studies with strict and facultative anaerobic bacteria showed that Clostridium app. and several other representatives of Bacillaceae and Enterobacteriaceae actively degraded γ-hexachlorocyclohexane (γ-HCH) under anaerobic conditions. Representatives of Lactobacillaceae and Propronibacterium were inactive. With 36Cl-labelled γ-HCH a nearly complete dechlorination was shown to occur in 4–6 days by Clostridium butyricum, C. pasteurianum and Citrobacter freundii, while other facultative anaerobic species were less active.

Aerobically grown facultative anaerobes also dechlorinated actively γ-HCH during subsequent anaerobic incubation with glucose, pyruvate or formate as substrates. The α-, β- and δ-HCH isomers were also, but more slowly, dechlorinated (γ>α>β≥δ-HCH). All species active in anaerobic degradation of γ-HCH formed γ-tetrachlorocyclohexene (TCH) as the main intermediate metabolite and no γ-pentachlorocyclohexene (PCH) or other isomers of TCH or PCH have been found. Small amounts of tri- and tetrachlorinated benzenes have been found too. The mechanism of dechlorination is discussed.

Key words

Insecticides Hexachlorocyclohexane isomers Anaerobic degradation Dechlorination Facultative anaerobic bacteria γ-Tetrachlorocyclohexene 

Non-Common Abbreviations Used








gas liquid chromatography


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, J. P. E., Lichtenstein, E. P., Wittingham, W. F.: Effect of Mucor alternans on the persistence of DDT and dieldrin in culture and soil. J. Econ. Entomol. 63, 1595–1599 (1970)Google Scholar
  2. Benezet, J. H., Matsumura, F.: Isomerization of γ-BHC to α-BHC in the environment. Nature (Lond.) 243, 480–481 (1973)Google Scholar
  3. Buchanan, B. B., Arnon, D. I.: Ferredoxins: Chemistry and function in photosynthetis, nitrogen fixation and fermentative metabolism. Adv. Enzymol. 33, 119–176 (1970)Google Scholar
  4. Campbell, N. E. R., Evans, H. J.: Use of Pankhurst tubes to assay acetylene reduction by facultative and anaerobic nitrogen fixing bacteria. Can. J. Microbiol. 15, 1342–1343 (1969)Google Scholar
  5. Decker, K., Jungermann, K., Thauer, R. K.: Wege der Energiegewinnung in Anaerobiern. Angew. Chemie 82, 153–174 (1970)Google Scholar
  6. Engst, R., Macholz, R. M., Kujawa, M.: The metabolism of lindane and its metabolites. γ-2,3,4,5,6-pentachlorocyclohexene, pentachlorobenzene, and pentachlorophenol in rats and the pathways of lindane metabolism. J. Environ. Sci. Health. 11, 95–117 (1976)Google Scholar
  7. Guenzi, W. D., Beard, W. E.: Anaerobic conversion of DDT to DDD and anaerobic stability of DDT in soil. Soil Sci. Soc. Amer. Proc. 32, 522–524 (1968)Google Scholar
  8. Haider, K., Jagnow, G.: Abbau von 14C-, 3H- und 36Cl-markiertem γ-Hexachlorcyclohexan durch anaerobe Bodenmikroorganismen. Arch. Microbiol. 104, 113–121 (1975)Google Scholar
  9. Haider, K., Jagnow, G., Rohr, R.: Anaerober Abbau von γ-Hexachlorcyclohexan durch eine bakterielle Mischflora des Bodens und des Kuhpansens. Landwirtsch. Forsch. 32/II, 147–152 (1976)Google Scholar
  10. Hashimoto, H., Simon, H.: Reduktion Dehalogenierung β-halogenierter Fettsäuren und stereospezifische Hydrierung α-halogenierter, β-ungesättigter Fettsäuren durch Clostridium kluyveri. Angew. Chem. 87, 111–112 (1975)Google Scholar
  11. Hill, D. W., McCarty, P. L.: Anaerobic degradation of selected chlorinated hydrocarbon pesticides. J. Water Poll. Contr. Fed. 39, 1259–1277 (1967)Google Scholar
  12. Hissett, R., Gray, T. R. G.: Bacterial populations of litter and soil in a deciduous woodland. 1. Qualitative studies. Rev. Ecol. Biol. du Sol. 10, 495–508 (1973)Google Scholar
  13. Kohli, J., Weisgerber, I., Klein, W.: Balance of conversion of (14C) lindane in lettuce in hydroponic culture. Pest. Biochem. Physiol. 6, 91–97 (1976)Google Scholar
  14. Kohnen, R., Haider, K., Jagnow, G.: Investigations on the microbial degradation of lindane in submerged and aerated moist soil. Environm. Qual. Safety, Vol. III (F. Coulston, F. Korte, eds.), pp. 222–225. Stuttgart: Thieme 1975Google Scholar
  15. Kujawa, M., Härtig, M., Macholz, R. M., Engst, R.: Der Abbau von 14C-Lindan durch eine Schimmelpilzkultur. Nahrung 20, 181–183 (1976)Google Scholar
  16. MacRae, I. C., Raghu, K., Bautista, E. M.: Anaerobic degradation of the insecticide lindane by Clostridium spec. Nature (Lond.) 221, 859–860 (1969)Google Scholar
  17. MacRae, I. C., Raghu, K., Castro, T. F.: Persistance and biodegradation of four common isomers of benzene hexachloride in submerged soil. J. Agr. Food Chem. 15, 911–914 (1967)Google Scholar
  18. McBride, B. C., Wolfe, R. S.: Inhibition of methanogenesis by DDT. Nature (Lond.) 234, 551–552 (1971)Google Scholar
  19. Münster, J., Schulte-Hermann, R., Koransky, W., Hoyer, G.-A.: Über die Rolle von Pentachlorocyclohexen bei Stoffwechsel und Wirkung von Hexachlorocyclohexan. I. Synthese von β-Pentachlorocyclohexen und seine Identifizierung ais Monodehydrochlorierungsprodukt von α-Hexachlorocyclohexan. Hoppe-Seyler's Z. Physiol. Chem. 356, 437–447 (1975)Google Scholar
  20. Orloff, H. D., Kolka, H. J., Calingaert, G., Griffin, M. E., Kerr, E. R.: The partial additive chlorination of the benzene ring. II. The isomers of benzene tetrachloride. J. Amer. Chem. Soc. 75, 4243–4249 (1953)Google Scholar
  21. Primrose, S. B., Dilworth, M. V.: Ethylene production by bacteria. J. Gen. Microbiol. 93, 177–181 (1976)Google Scholar
  22. Schrauzer, G. N.: Neucre Entwicklungen auf dem Gebiet des Vitamins B12. Von einfachen Corrinen und von Coenzym B12 abhängige Enzymreaktionen. Angew. Chemie 89, 239–251 (1977)Google Scholar
  23. Schuphan, S., Ballschmiter, K.: Metabolismus von Hexachlorbicyclo-[2.2.1]-hept-2-en: Abbau des polychlorierten Gerüstes durch Clostridium butyricum. Z. Pflanzenkrank. Pflanzenschutz 79, 23–26 (1972)Google Scholar
  24. Sethunathan, N.: Microbial degradation of insecticides in flooded soil and in anaerobic cultures. Residue Rev. 47, 143–166 (1973)Google Scholar
  25. Siddaramappa, R., Sethunathan, N.: Persistance of γ-BHC and and β-BHC in Indian rice soils under flooded conditions. Pestic. Sci. 6, 395–403 (1975)Google Scholar
  26. Stein, K., Portig, J., Koransky, W.: Oxidative transformation of hexachlorocyclohexane in rats and with liver microsomes. Naunyn-Schmiedeberg's Arch. Pharmacol. 298, 115–128 (1977)Google Scholar
  27. Stotter, D. A.: Metal centers and DDT. Inorg. Nucl. Chem. 39, 721–728 (1977)Google Scholar
  28. Thauer, R. K., Fuchs, G., Jungermann, K.: Role of iron-sulfur proteins in formate metabolism. In: Iron-sulphur proteins, Vol. III, pp. 121–156. New York-San Francisco-London: Academic Press 1977Google Scholar
  29. Tsukano, Y., Kobayashi, A.: Formation of γ-BTC in flooded rice field soils treated with γ-BHC. Agr. Biol. Chem. 36, 166–167 (1972)Google Scholar
  30. Tu, C. M.: Interaction between lindane and microbes in soils. Arch. Microbiol. 105, 131–134 (1975)Google Scholar
  31. Tu, C. M.: Utilization and degradation of lindane by soil microorganisms. Arch. Microbiol. 108, 259–263 (1976)Google Scholar
  32. Wood, J. M., Kennedy, F. S., Wolfe, R. S.: Reaction of multihalogenated hydrocarbons with free and bound reduced vitamin B12. Biochemistry 7, 1707–1712 (1968)Google Scholar
  33. Yoshida, T.: Microbial metabolism of flooded soils. In: Soil biochemistry, Vol. 3 (E. A. Paul, D. McLaren, eds.), pp. 83–122, New York: Dekker 1975Google Scholar
  34. Yoshida, T., Castro, T. F.: Degradation of γ-BHC in rice soils. Soil Sci. Soc. Amer. Proc. 34, 440–448 (1970)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • G. Jagnow
    • 1
  • K. Haider
    • 1
  • P. -Chr. Ellwardt
    • 1
  1. 1.Institut für BodenbiologieBundesforschungsanstalt für Landwirtschaft und Institut für Biochemie des BodensBraunschweigGermany

Personalised recommendations