Archives of Microbiology

, Volume 115, Issue 3, pp 259–263 | Cite as

A pleiotropic mutant of Rhodopseudomonas capsulata defective in nitrogen metabolism

  • Judy D. Wall
  • Bo C. Johansson
  • Howard Gest
Article

Abstract

Wild type strains of Rhodopseudomonas capsulata typically can use N2, NH 4 + , or various nitrogenous organic compounds as N sources for photosynthetic growth. One class of mutants selected for inability to grow on N2 (Nif) also shows simultaneous loss of capacity to obtain N from numerous organic substrates. When supplied at relatively high concentrations, ammonia can be used as the sole N source for growth of such strains. Enzymatic analysis of one mutant (W11) indicates that the pleiotropic effect on N nutrition is neither due to detectable alteration in the activities of nitrogenase or the initial enzymes responsible for bulk assimilation of ammonia (glutamine synthetase and glutamate synthase) nor to absence of systems required for catabolism of organic N sources. The phenotype of W11 (Nit; defective in N metabolism) appears to result from loss of ability to grow using low concentrations of ammonia (supplied externally or generated in vivo).

Key words

Rhodopseudomonas capsulata Photosynthetic bacteria N2 and ammonia metabolism N metabolism mutant Glutamine metabolism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bender, R. A., Janssen, K. A., Resnick, A. D., Blumenberg, M., Foor, F., Magasanik, B.: Biochemical parameters of glutamine synthetase from Klebsiella aerogenes. J. Bacteriol. 129, 1001–1009 (1977)Google Scholar
  2. Brenchley, J. E., Prival, M. J., Magasanik, B.: Regulation of the synthesis of enzymes responsible for glutamate formation in Klebsiella aerogenes. J. biol. Chem. 248, 6122–6128 (1973)Google Scholar
  3. Brill, W. J.: Regulation, and genetics of bacterial nitrogen fixation. Ann. Rev. Microbiol. 29, 109–129 (1975)Google Scholar
  4. Broach, J., Neumann, C., Kustu, S.: Mutant strains (nit) of Salmonella typhimurium with a pleiotropic defect in nitrogen metabolism. J. Bacteriol. 128, 86–98 (1976)Google Scholar
  5. Buchanan, J. M.: The amidotransferases. Adv. Enzymol. 39, 91–183 (1973)Google Scholar
  6. Hillmer, P., Gest, H.: H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: H2 production by growing cultures. J. Bacteriol. 129, 724–731 (1977a)Google Scholar
  7. Hillmer, P., Gest, H.: H2 metabolism in the photosynthetic bacterium Rhodopseudomonas capsulata: production and utilization of H2 by resting cells. J. Bacteriol. 129, 732–739 (1977b)Google Scholar
  8. Johansson, B. C., Gest, H.: Inorganic nitrogen assimilation by the photosynthetic bacterium Rhodopseudomonas capsulata. J. Bacteriol. 128, 683–688 (1976)Google Scholar
  9. Johansson, B. C., Gest, H.: Adenylylation/deadenylylation control of the glutamine synthetase of Rhodopseudomonas capsulata. Europ. J. Biochem. (1977, in press)Google Scholar
  10. Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin phenol reagent. J. biol. Chem. 193, 265–275 (1951)Google Scholar
  11. Meers, J. L., Tempest, D. W., Brown, C. M.: “Glutamine(amide): 2-oxoglutarate amino transferase oxido-reductase (NADP)”, an enzyme involved in the synthesis of glutamate by some bacteria. J. gen. Microbiol. 64, 187–194 (1970)Google Scholar
  12. Nagatani, H., Shimizu, M., Valentine, R. C.: The mechanism of ammonia assimilation in nitrogen fixing bacteria. Arch. Mikrobiol. 79, 164–175 (1971)Google Scholar
  13. Prival, M. J., Brenchley, J. E., Magasanik, B.: Glutamine synthetase and the regulation of histidase formation in Klebsiella aerogenes. J. biol. Chem. 248, 4334–4344 (1973)Google Scholar
  14. Shapiro, B. M., Kingdon, H. S., Stadtman, E. R.: Regulation of glutamine synthetase. VII. Adenylyl glutamine synthetase: a new form of the enzyme with altered regulatory and kinetic properties. Proc. nat. Acad. Sci. (Wash.) 58, 642–649 (1967)Google Scholar
  15. Shapiro, B. M., Stadtman, E. R.: Glutamine synthetase (Escherichia coli). In: Method in enzymology, Vol. 17A (S. P. Colowick, N. O. Kaplan, eds.) pp. 910–922. New York: Academic Press 1970Google Scholar
  16. Tubb, R. S.: Glutamine synthetase and ammonium regulation of nitrogenase synthesis in Klebsiella. Nature (London) 251, 481–485 (1974)Google Scholar
  17. Wall, J. D., Weaver, P. F., Gest, H.: Genetic transfer of nitrogenase—hydrogenase activity in Rhodopseudomonas capsulata. Nature (London) 258, 630–631 (1975)Google Scholar
  18. Weaver, P. F., Wall, J. D., Gest, H.: Characterization of Rhodopseudomonas capsulata. Arch. Microbiol. 105, 207–216 (1975)Google Scholar

Copyright information

© Springer-Verlag 1977

Authors and Affiliations

  • Judy D. Wall
    • 1
  • Bo C. Johansson
    • 1
  • Howard Gest
    • 1
  1. 1.Photosynthetic Bacteria Group, Department of BiologyIndiana UniversityBloomingtonUSA

Personalised recommendations