Archives of Microbiology

, Volume 100, Issue 1, pp 163–178 | Cite as

Growth and metabolism of the obligate photolithotroph Chlorobium thiosulfatophilum in the presence of added organic nutrients

  • Donovan P. Kelly
Article

Abstract

Growth of Chlorobium vibrioforme f. thiosulfatophilum NCIB 8327 could be monitored by measurement of turbidity (E600); absorbance at 745 and 665 nm; increase in methanol-extractable pigment (E660); fixation of 14CO2; and titration of thiosulphate and sulphide in the medium. Growth could be inhibited by formate, methionine, tryptophan, tyrosine, threonine, serine and glycine, but not by 14 other amino acids, shikimic acid, some alcohols, sugars or acetate. Inhibition could some-times be relieved by the presence of other amino acids. This was probably partly due to restoration of normal internal amino acid requirements by “feeding”, and partly because uptake of amino acids appeared to show some competition for two or more low specificity uptake systems. Numerous 14C-labelled amino acids, formate and glucose were shown to be photoassimilated by Chlorobium, and the labelling patterns obtained provided information on its pathways of intermediary biosynthesis. Growth inhibition by threonine could be related to the probable presence of a normal branched pathway for the synthesis of the aspartate family of amino acids, with an aspartokinase enzyme subject to strong inhibition by threonine and lysine, separately and in combination.

Key words

Chlorobium thiosulfatophilum Amino Acid Metabolism Growth Inhibition Photoheterotrophy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Belousova, A. A.: Effect of some amino acids on the yield of green sulphur bacteria Chlorobium thiosulfatophilum. Mikrobiologiya 37, 1010–1016 (1968)Google Scholar
  2. Beuscher, N., Gottschalk, G.: Lack of citrate lyase—the key enzyme of the reductive tricarboxylic acid cycle—in Chlorobium thiosulfatophilum and Rhodospirillum rubrum. Z. Naturforsch. 27, 967–973 (1972)Google Scholar
  3. Buchanan, B. B., Schürmann, P., Shanmugam, K. T.: Role of the reductive carboxylic acid cycle in a photosynthetic bacterium lacking ribulose 1,5-diphosphate carboxylase. Biochim. biophys. Acta (Amst.) 283, 136–145 (1972)Google Scholar
  4. DSM: Catalogue of strains (autotrophic and spore forming bacteria), Deutsche Sammlung von Mikroorganismen, p. 21. München: Gesellschaft für Strahlenund Umweltforschung mbH 1973Google Scholar
  5. Eccleston, M., Kelly, D. P.: Assimilation and toxicity of exogenous amino acids in the methane-oxidizing bacterium Methylococcus capsulatus. J. gen. Microbiol. 71, 541–554 (1972a)Google Scholar
  6. Eccleston, M., Kelly, D. P.: Competition among amino acids for incorporation into Methylococcus capsulatus. J. gen. Microbiol. 73, 303–314 (1972b)Google Scholar
  7. Eccleston, M., Kelly, D. P.: Assimilation and toxicity of some exogenous C1 compounds, alcohols, sugars and acetate in the methane-oxidizing bacterium Methylococcus capsulatus. J. gen. Microbiol. 75, 211–221 (1973a)Google Scholar
  8. Eccleston, M., Kelly, D. P.: Inhibition by l-threonine of aspartokinase as a cause of threonine toxicity to Methylococcus capsulatus. J. gen. Microbiol. 75, 223–226 (1973b)Google Scholar
  9. Evans, M. C. W., Buchanan, B. B., Arnon, D. I.: A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. Proc. nat. Acad. Sci. (Wash.) 55, 928–934 (1966)Google Scholar
  10. Evans, M. C. W., Whatley, F. R.: Photosynthetic mechanisms in prokaryotes and eukaryotes. Symp. Soc. gen. Microbiol. 20, 203–220 (1970)Google Scholar
  11. Hoare, D. S., Gibson, J.: Photoassimilation of acetate and the biosynthesis of amino acids by Chlorobium thiosulfatophilum. Biochem. J. 91, 546–559 (1964)Google Scholar
  12. Kelly, D. P.: The incorporation of acetate by the chemoautotroph Thiobacillus neapolitanus strain C. Arch. Mikrobiol. 58, 99–116 (1967)Google Scholar
  13. Kelly, D. P.: Regulation of chemoautotrophic metabolism. I. Toxicity of phenylalanine to thiobacilli. Arch. Mikrobiol. 69, 330–342 (1969a)Google Scholar
  14. Kelly, D. P.: Regulation of chemoautotrophic metabolism. II. Competition between amino acids for incorporation into Thiobacillus. Arch. Mikrobiol. 69, 343–359 (1969b)Google Scholar
  15. Kelly, D. P.: Metabolism of organic acids by Thiobacillus neapolitanus. Arch. Mikrobiol. 73, 177–192 (1970)Google Scholar
  16. Kelly, D. P.: Autotrophy: concepts of lithotrophic bacteria and their organic metabolism. Ann. Rev. Microbiol. 25, 177–210 (1971)Google Scholar
  17. Kusai, K., Yamanaka, T.: The oxidation mechanisms of thiosulphate and sulphide in Chlorobium thiosulfatophilum: roles of cytochrome c-551 and cytochrome c-553. Biochim. biophys. Acta (Amst.) 325, 304–314 (1973)Google Scholar
  18. Larsen, H.: On the microbiology and biochemistry of the photosynthetic green sulfur bacteria. Trondheim: Det Kgl Norske Videnskabers Selskabs Skrifter Nr 1 1953Google Scholar
  19. Lu, M. C., Matin, A., Rittenberg, S. C.: Inhibition of growth of obligately chemolithotrophic thiobacilli by amino acids. Arch. Mikrobiol. 79, 354–366 (1971)Google Scholar
  20. Nadson, G. A.: On the morphology of the lower algae. III. Chlorobium limicola Nads. Bull. Imp. Bot. Garden St. Petersburg 6, 190–194 (1906)Google Scholar
  21. Nadson, G. A.: Microbiological studies. I. Chlorobium limicola Nads., a green microorganism with inactive chlorophyll. Bull. Imp. Bot. Garden St. Petersburg 12, 55–89 (1912)Google Scholar
  22. Nesterov, A. I., Gogotov, I. N., Kondrat'eva, E. N.: Significance of light intensity for the utilization of various carbon compounds by photosynthesizing bacteria. Mikrobiologiya 35, 193–199 (1965)Google Scholar
  23. Pfennig, N.: Photosynthetic bacteria. Ann. Rev. Microbiol. 21, 285–324 (1967)Google Scholar
  24. Pfennig, N., Lippert, K. D.: Über das Vitamin B12-Bedürfnis phototropher Schwefelbakterien. Arch. Mikrobiol. 55, 245–256 (1966)Google Scholar
  25. Pfennig, N., Trüper, H. G.: New nomenclatural combinations in the phototrophic sulphur bacteria. Int. J. syst. Bacteriol. 21, 11–14 (1971)Google Scholar
  26. Rittenberg, S. C.: The roles of exogenous organic matter in the physiology of chemolithotrophic bacteria. Advanc. Microbial Physiol. 3, 159–196 (1969)Google Scholar
  27. Rittenberg, S. C.: The obligate autotroph—the demise of a concept. Antonie v. Leeuwenhoek 38, 457–478 (1972)Google Scholar
  28. Roy, A. B., Trudinger, P. A.: The biochemistry of inorganic compounds of sulphur Cambridge: University Press 1970Google Scholar
  29. Sadler, W. R., Stanier, R. Y.: The function of acetate in photosynthesis by green bacteria. Proc. nat. Acad. Sci. (Wash.) 46, 1328–1334 (1960)Google Scholar
  30. Shaposhnikov, V. N., Kondrat'eva, E. N., Fedorov, V. D.: A contribution to the study of the green sulphur bacteria of the genus Chlorobium. Mikrobiologiya (Engl. Trans.) 27, 521–527 (1958)Google Scholar
  31. Sirevåg, R.: Further studies on carbon dioxide fixation in Chlorobium. Arch. Microbiol. 98, 3–18 (1974)Google Scholar
  32. Sirevåg, R., Ormerod, J. G.: Carbon dioxide fixation in green sulphur bacteria. Biochem. J. 120, 399–408 (1970)Google Scholar
  33. Smith, I.: Chromatographic and electrophoretic techniques, Vol. 1. London: Heinemann 1960Google Scholar
  34. Trüper, H. G., Peck, H. D.: Formation of adenylyl sulfate in phototrophic bacteria. Arch. Mikrobiol. 73, 125–142 (1970)Google Scholar
  35. van Gemerden, H.: Growth measurements of Chromatium cultures. Arch. Mikrobiol. 64, 103–110 (1968)Google Scholar
  36. van Niel, C. B.: On the morphology and physiology of the purple and green sulphur bacteria. Arch. Mikrobiol. 3, 1–112 (1931)Google Scholar

Copyright information

© Springer-Verlag 1974

Authors and Affiliations

  • Donovan P. Kelly
    • 1
    • 2
  1. 1.Department of MicrobiologyQueen Elizabeth CollegeLondon
  2. 2.University of WarwickCoventryEngland

Personalised recommendations