Advertisement

Journal of Materials Science

, Volume 29, Issue 3, pp 830–834 | Cite as

Effect of nickel on microwave dielectric properties of Ba(Mg1/3Ta2/3)O3

  • E. S. Kim
  • K. H. Yoon
Papers

Abstract

The dielectric and physical properties of the complex perovskite Ba(Mg1/3Ta2/3)O3 system in which magnesium was substituted for nickel from 0.03–0.67 mol%, were investigated in the temperature range 20–110‡C, and the frequency range 10.5–14.5 GHz. As the nickel content was increased, the dielectric constant, the degree of ordering, and the unloaded Q decreased. The temperature dependence of the dielectric constant and the temperature coefficient of resonant frequency of the specimens annealed at 1500‡C for 20 h were found to be greater than those of the specimens sintered at 1650‡C for 2 h. These results are due to the increase in the density, the increase in grain size, and the lattice distortion.

Keywords

Polymer Grain Size Nickel Magnesium Microwave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Kawashima, M. Nisida, I. Ueda and H. Ouchi, J. Am. Ceram. Soc. 66 (1983) 421.Google Scholar
  2. 2.
    S. Nomura and K. Kaneta, Jpn J. Appl. Phys. 23 (1984) 507.Google Scholar
  3. 3.
    S. B. Desu and H. M. O'bryan, J. Am. Ceram. Soc. 68 (1985) 546.Google Scholar
  4. 4.
    M. Onoda, J. Kuwata, K. Kaneda, K. Toyama and S. Nomura, Jpn J. Appl. Phys. 21 (1982) 1707.Google Scholar
  5. 5.
    K. Endo, K. Fujimoto and K. Murakawa, J. Am. Ceram. Soc. 70 (1987) C215.Google Scholar
  6. 6.
    K. H. Yon, B. J. Jung and E. S. Kim, J. Mater. Sci. Lett. 8 (1989) 819.Google Scholar
  7. 7.
    E. S. Kim and K. H. Yoon, Ferroelectrics 133 (1992) 187.Google Scholar
  8. 8.
    F. Galasso and J. Pyle, Inorg. Chem. 2 (1963) 482.Google Scholar
  9. 9.
    M. U. Cohen, Rev. Sci. Instrum. 6 (1963) 68.Google Scholar
  10. 10.
    B. W. Hakki and Coleman, IRE Trans. Microwave Theory Technol. 8 (1960) 402.Google Scholar
  11. 11.
    H. Von Wartenberg and E. Prophet, in “Phase Diagrams for Ceramists”, edited by E. M. Levin, C. R. Robbins, H. F. McMurdie and M. K. Reser (The American Ceramic Society, Columbus, OH, USA, 1964) Fig. 274, p. 113.Google Scholar
  12. 12.
    B. W. King, J. Schultz, E. A. Durbin and U. S. Duckworth, ibid.in “, Fig. 273, p. 113.Google Scholar
  13. 13.
    R. S. Roth, J. L. Waring and W. S. Brower, in “Phase Diagrams for Ceramists 1975 Supplement”, edited by E. M. Levin, C. R. Robbins, H. F. McMurdie and M. K. Reser (The American Ceramic Society, Columbus, OH, USA, 1975) Fig. 4340, p. 118.Google Scholar
  14. 14.
    J. J. Lander, in “Phase diagrams for Ceramists”, edited by E. M. Levin, C. R. Robbins, H. F. McMurdie and M. K. Reser (The American Ceramic Society, OH, 1964) Fig. 205, p. 96.Google Scholar
  15. 15.
    H. V. Wartenberg and E. Prophet, ibid.in “, Fig. 258, p 110.Google Scholar
  16. 16.
    R. S. Roth, J. L. Waring and W. S. Brower, in “Phase diagrams for Ceramists 1975 Supplement”, edited by E. M. Levin, C. R. Robbins, H. F. McMurdie and M. K. Reser (The American Ceramic Society, Columbus, OH, USA, 1975) Fig. 4347, p. 121.Google Scholar
  17. 17.
    M. Takata and K. Kageyama, J. Am. Ceram. Soc. 72 (1989) 1955.Google Scholar
  18. 18.
    K. Wakino, K. Minai and H. Tamura, ibid. 67 (1984) 278.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • E. S. Kim
    • 1
  • K. H. Yoon
    • 1
  1. 1.Department of Ceramic EngineeringYonsei UniversitySeoulKorea

Personalised recommendations