Skip to main content
Log in

Role of oxygen diffusion in polymer ageing: kinetic and mechanical aspects

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

For an ageing process involving the consumption of a small molecule (typically O2 or H2O) by reaction with the polymer, there are critical conditions of reaction rate and/or thickness above which the process becomes kinetically controlled by the diffusion of the small molecule in the polymer. Suitable lifetime prediction models must then involve the thickness distribution of reaction products. This latter can be predicted from Fick's law, modified by a term relative to the rate of consumption of the diffusing species by the chemical reaction. Some problems related to the use of this approach are examined here. It appears that, in the most frequent case, the thickness of the degraded layer is of the order of magnitude of D/k, where D is the diffusion coefficient and k the pseudo-first-order rate constant for reactant consumption. Some examples of application related to photochemical, radiochemical and thermochemical ageing are examined. It can, for instance, be shown that in photochemical or radiochemical ageing, the thickness of the oxidized layer (TOL) is proportional to the reciprocal of l β, where l is the radiation intensity and Β an exponent depending essentially on the radical chain mechanism. It is generally expected that in the case of thermal ageing, the TOL is a decreasing function of the temperature. Some consequences of diffusion control on accelerated and natural ageing methods are briefly examined. The consequences of the ageing-induced “skin-core” structure due to the diffusion control are examined. The main features of the observed polymer embrittlement can be explained in terms of fracture mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. C. Golike and S. W. Lazoski, J. Phys. Chem. 64 (1960) 895.

    Article  CAS  Google Scholar 

  2. G. C. Furneaux, K. J. Leddury and A. Davis, Polym. Degrad. Stab. 3 (1986) 431.

    Article  Google Scholar 

  3. A. V. Cunliffe and A. Davis, ibid 4 (1982) 17.

    Article  CAS  Google Scholar 

  4. T. Seguchi, S. Hashimuto, K. Akakawa, N. Hayakawa, W. Kawakami and J. Kuryama, Rdiat. Phys. Chem. 17 (1981) 191.

    Google Scholar 

  5. S. P. Fairgreve and J. R. McCallum, Polym. Degrad. Stab. 11 (1985) 251.

    Article  Google Scholar 

  6. J. R. Puig, “Les techniques de l/Ingéniew-Génie nucléaire” (Paris) B 3770 (1982) 1.

    Google Scholar 

  7. M. V. Belusova and V. D. Skirda Acta Polym. 10 (1985) 36.

    Google Scholar 

  8. G. Papet, L. Audouin-Jirackova and J. Verdu, Radiat. Phys. Chem. 33 (1989) 329.

    CAS  Google Scholar 

  9. S. G. Kiryushkin and Y. A. Shlyapnikov, Polym. Degrad. Stab. 23 (2) 185.

  10. K. T. Gillen and R. L. Clough, in “Handbook of Polymer Science and Technology”, Vol. 2, edited by N. P. Cheremisinoff (Dekker, New York, 1989) p. 170.

    Google Scholar 

  11. G. S. Park and J. Crank, “Diffusion in Polymers” (Academic, New York, 1981) pp. 4–20.

    Google Scholar 

  12. L. Audouin and J. Verdu, ACS Symp. Ser. 475 (1991) 473.

    Article  CAS  Google Scholar 

  13. M. Lehuy, thesis, ENSAM, Paris (1990).

    Google Scholar 

  14. Idem, Polym. Degrad. Stab. in press.

  15. J. Petruj and J. Marchal, ibid 16 (1980) 27.

    CAS  Google Scholar 

  16. A. Huvet, J. Philippe and J. Verdu, Euro. Polym. J. 14 (1978) 709.

    Article  CAS  Google Scholar 

  17. K. T. Gillen and R. L. Clough, J. Polym. Sci., Polym. Chem. Edn. 19 (1985) 2041.

    Google Scholar 

  18. H. Wilski, Radiat. Phys. Chem. 29 (1) (1987) 1.

    CAS  Google Scholar 

  19. de J. C. M. Bruijn, thesis, Delft University Press, 1992.

  20. T. G. Ryan, P. D. Calvert and N. C. Billingham, “Stabilization and Degradation of Polymers”, ACS Chemistry Series Vol. 169 p. 261.

  21. X. Jouan and L. Gardette, Polym. Commun. 28 (1987) 239.

    Google Scholar 

  22. V. Langlois, M. Meyer, L. Audouin and J. Verdu, Polym. Degrad. Stab. 40 (1993) 399.

    Article  CAS  Google Scholar 

  23. J. L. Gardon, J. Coll. Interf. Sci 59 (1977) 582.

    Article  CAS  Google Scholar 

  24. Idem, Progr. Org. Coatings 5 (1977) 1.

    Article  CAS  Google Scholar 

  25. H. H. Kausch, in “Interrelations between Processing, Structure and Properties of Polymeric materials”, edited by J. C. Seferis and P. S. Theocaris (Elsevier, Amsterdam, 1984) p. 363.

    Google Scholar 

  26. J. Pabiot and J. Verdu, Polym. Eng. Sci. 21 (1) (1981) 32.

    Article  CAS  Google Scholar 

  27. R. J. Gardner and J. R. Martin, J. Appl. Polym. Sci. 24 (1979) 1269.

    Article  CAS  Google Scholar 

  28. B. Mortaigne, thesis, ENSAM, Paris (1989).

    Google Scholar 

  29. J. Verdu, B. Mortaigne and P. A. Hoarau, in Proceedings of 11th International Conference on Advances in the Stabilization and Controlled Degradation of Polymers, Luzern, 24–26 May 1989.

  30. C. B. Bucknall and D. G. Street, J. Appl. Polym. Sci. 12 (1968) 1311.

    Article  CAS  Google Scholar 

  31. G. M. Ruhnke and L. F. Biritz, Plast. Polym. 6 (1972) 118.

    Google Scholar 

  32. E. Priebe and J. Stabenow, Kunststoffe 64 (1974) 497.

    CAS  Google Scholar 

  33. D. J. Carlsson and D. Wiles, J. Macromol. Sci. C 14 (1) (1976) 65.

    Article  Google Scholar 

  34. M. D. Wolkowicz and S. K. Gaggar, Polym. Eng. Sci. 21 (1981) 571.

    Article  CAS  Google Scholar 

  35. P. So and L. J. Broutman, ibid. 22 (1982) 888.

    Article  CAS  Google Scholar 

  36. L. Rolland, K. Thomson, S. Mostovoy and L. J. Broutman, in Proceedings of International Conference on Deformation, Yield and Fracture of Polymers, Cambridge, 1982.

  37. L. Rolland and L. J. Broutman, in Proceedings of ANTEC 83, May 1983 (1983) p. 451.

  38. N. Rosenzweig and L. J. Broutman, ibid. p. 455.

  39. L. Rolland and L. J. Broutman, in Proceedings of ANTEC 85 (1985) p. 634.

  40. P. So and L. J. Broutman, ibid. p. 639.

  41. L. J. Broutman and L. Rolland, in Proceedings of ANTEC 86, April 1986 (1986) p. 600.

  42. G. E. Schoolenberg, thesis, Technical University of Delft (1988).

  43. Idem, J. Mater. Sci. 23 (1988) 1580.

    Article  CAS  Google Scholar 

  44. D. W. Van Krevelen and P. J. Hoftyzer in “Properties of Polymers” (Elsevier Scientific, New York 1976) p. 410.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Audouin, L., Langlois, V., Verdu, J. et al. Role of oxygen diffusion in polymer ageing: kinetic and mechanical aspects. Journal of Materials Science 29, 569–583 (1994). https://doi.org/10.1007/BF00445968

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00445968

Keywords

Navigation