Advertisement

Current Genetics

, Volume 2, Issue 1, pp 9–16 | Cite as

Transformation of Saccharomyces cerevisiae with plasmids containing fragments of yeast 2 μ DNA and a suppressor tRNA gene

  • David Y. Thomas
  • Allen P. James
Article

Abstract

Hybrid plasmids have been constructed containing segments of the yeast plasmid 2 μ DNA, the yeast ochre-suppressing SUP4.0 gene and the bacterial plasmid pBR322. Yeast transformation is detected with a host containing multiple ochre auxotrophic mutations. The transformed SUP4.0 gene is active and can promote growth in the absence of all the requirements. Plasmids containing different fragments of 2 μ DNA all appear to be active in high frequency transformation of yeast containing 2 μ DNA, except those containing the HindlII-D fragment. The transforming plasmids undergo recombination with the indigenous 2 μ DNA. Integration of the transforming plasmid into the host chromosome has been detected by hybridization of restriction enzyme cleaved DNA with labelled pBR322. The plasmids contain restriction enzyme sites which can be used for cloning other genes into yeast.

Key words

Yeast plasmid Vector Suppressor fRNA 

Abbreviations

kb

kilobase pair

2 μ

the yeast plasmid of 6.2 kb size

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beggs, J. D.: Nature 275, 104–109 (1978)Google Scholar
  2. Bell, L., Byers. B.: Proc. Nat. Acad. Sci. USA 76, 3445–3449 (1979)Google Scholar
  3. Cameron, J. R., Philippsen, P., Davis, R. W.: Nucl. Acids Res. 4, 1429–1448 (1977)Google Scholar
  4. Clewell, D. B., Helinski, D. R.: Proc. Nat. Acad. Sci. USA 62, 1159–1166 (1966)Google Scholar
  5. Goodman, H. M., Olson, M. V., Hall, B. D.: Proc. Nat. Acad. Sci. USA 74, 5453–5457 (1977)Google Scholar
  6. Grunstein, M., Hogness, D. S.: Proc. Nat. Acad. Sci. USA 72, 3961–3965 (1975)Google Scholar
  7. Hawthorne, D. C., Leupold, U.: Curr. Top. Microbiol. Immunol. 64, 1–17 (1974)Google Scholar
  8. Hinnen, A., Hicks, J. B., Fink, G. R.: Proc. Nat. Acad. Sci. USA 75, 1929–1933 (1978)Google Scholar
  9. Hollenberg, C. P., Degelmann, H., Kustermann-Kuhn, B., Royer, H. D.: Proc. Nat. Acad. Sci. USA 73, 2072–2076 (1976)Google Scholar
  10. Lang, B., Burger, G., Doxiadis, I, Thomas, D. Y., Bandlow, W., Kaudewitz, F.: Anal. Biochem. 77, 110–121 (1977)Google Scholar
  11. Livingston, D., Klein, H. L.: J. Bacteriol. 129, 472–481 (1977)Google Scholar
  12. Mandel, M., Higa, A.: J. Mol. Biol. 53, 159–162 (1970)Google Scholar
  13. Morrison, D. A.: J. Bacteriol. 131, 349–351 (1977)Google Scholar
  14. Petes, T. D., Williamson, D. H.: Cell. 4, 249–253 (1975)Google Scholar
  15. Rigby, P. W. J., Dreckmann, M., Rhodes, C., Berg, P.: J. Mol. Biol. 113, 237–251 (1977)Google Scholar
  16. Roberts, R. J.: The role of restriction endonucleases in genetic engineering. In: “Recombinant Molecules: Impact on Science and Society” (R. Beers and E. Bassett (eds.). New York: Raven Press 1977Google Scholar
  17. Southern, E. M.: J. Mol. Biol. 98, 503–517 (1975)Google Scholar
  18. Struhl, K., Stinchcomb, D. T., Scherer, S., Davis, R. W.: Proc. Nat. Acad. Sci. USA 76 1035–1039 (1979)Google Scholar
  19. Sutcliffe, J. G.: Nucl. Acids. Res. 5, 2721–2728 (1978)Google Scholar
  20. Telford, T., Boseley, P., Schaffner, W., Birnsteil, M.: Science 195, 391–392 (1977)Google Scholar
  21. Thomas, M., Davis, R. W.: J. Mol. Biol. 91, 315–328 (1975)Google Scholar
  22. van Solingen, P., van der Plaat, J. B.: J. Bacteriol. 130, 946–947 (1977)Google Scholar
  23. Zakian, V. A., Brewer, B. J., Fangman, W. L.: Cell. 107, 923–934 (1979)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • David Y. Thomas
    • 1
  • Allen P. James
    • 1
  1. 1.Molecular Genetics Group, Division of Biological SciencesNational Research Council of CanadaOttawaCanada

Personalised recommendations