Changes of free amino acids in plasma of healthy subjects induced by physical exercise

  • V. Brodan
  • E. Kuhn
  • J. Pechar
  • D. Tomková
Article

Abstract

In eight healthy men a 20-min load of 1.5 W/kg body weight on a bicycle ergometer led to a significant increase of alanine and decline of leucine. Exhausting exercise caused in the same subjects a highly significant increase of alanine and decline of isoleucine, threonine, ornithine, leucine, serine, glycine, and asparagine and glutamine. The methionine and citrulline level declines also significantly. The total amino acids practically did not change. Physical exercise led furthermore to a marked increase of serum ammonia and uric acid. Urea nitrogen changed only little and on average had rather a declining tendency. The rise of alanine suggests the existence of a glucose-alanine cycle, the drop of ornithine and citrulline is most probably associated with the inhibition of ureogenesis in the liver. The reduction of leucine and isoleucine is probably the result of the entry of these amino acids into muscle and their deamination.

Key words

Exercise Free amino acids Ammonia Ureogenesis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armstrong, M. D., Stave, U.: A study of plasma free amino acid level. I.–III. Metabolism 22, 549–578 (1973)Google Scholar
  2. Barnela, F. V. de: The effect of insulin on plasma free amino acids. Acta physiol. lat.-amer. 15, 260–265 (1965)Google Scholar
  3. Betheil, J. J., Feigelson, M., Feigelson, P.: The differential effects of glucocorticoid on tissue and plasma amino acid levels. Biochim. biophys. Acta (Amst.) 104, 92–97 (1965)Google Scholar
  4. Brodan, V., Kuhn, E., Pechar, J., Honzák, R.: Metabolism of amino acids and ammonia during physical exercise in man. Nutr. Rep. Intern. 7, 611–619 (1973)Google Scholar
  5. Brodan, V., Kuhn, E., Pechar, J., Placer, Z., Slabochová, Z.: Influence of sodium glutamate on the metabolism during physical exercise. Nutr. Rep. Intern. 9, 223–232 (1974)Google Scholar
  6. Cahill, G. F., Jr.: Metabolic role of muscle. In: Muscle metabolism and exercise, B. Pernow, B. Saltin, eds., pp. 103–109. New York-London: Plenum Press 1971aGoogle Scholar
  7. Cahill, G. F., Jr.: Physiology of insulin in man. The Banting memorial lecture 1971. Diabetes 20, 785–799 (1971b)Google Scholar
  8. Christophe, J., Winand, J., Kutzner, R., Hebbelink, M.: Amino acid levels in plasma, liver, muscle and kidney during and after exercise in fasted and fed rats. Amer. J. Physiol. 221, 453–457 (1971)Google Scholar
  9. Felig, P., Posefsky, T., Marliss, E., Cahill, G. F., Jr.: Alanine: Key role in gluconeogenesis. Science 167, 1003–1004 (1970)Google Scholar
  10. Felig, P., Wahren, J.: Interrelationships between amino acid and carbohydrate metabolism during exercise: The glucose-alanine cycle. In: Muscle metabolism and exercise, B. Pernow, B. Saltin, eds., pp. 205–214. New York-London: Plenum Press 1971Google Scholar
  11. Goldstein, M. S.: Humoral character of the hypoglycemic effect of muscular work. Fed. Proc. 19, 164 (1960)Google Scholar
  12. Gontzea, I., Sutzesco, P., Dumitrache, S.: L'influence de láctivité physique sur le métabolisme azoté. In: AlimentatiÒn et travail, G. Debry, R. Bleyer, eds., pp. 29–60. Paris: Masson 1972Google Scholar
  13. HoŘejši, J.: Základy chemického vyšetŘování v lékaŘství. Praha: SZdN 1964Google Scholar
  14. Kaplan, S. A., Nagareda, C. S.: Effects of cortisol on amino acids in skeletal muscle and plasma. Endocrinology 72 267–272 (1963)Google Scholar
  15. Luck, J. M., Morrison, Gl, Wilbur, L. F.: The effect of insulin on amino acid content of blood. J. biol. Chem. 77, 151 (1928)Google Scholar
  16. Margaria, R., Foa, P.: Der Einflu\ von Muskelarbeit auf den Stickstoffwechsel, die Kreatin- und SÄureausscheidung. Arbeitsphysiologie 2, 395–400 (1929–1930)Google Scholar
  17. Metz, R., Salter, J. M., Brunet, G.: Effect of pyruvate and other substrates on urea synthesis in rat liver slices. Metabolism 17, 158–167 (1968)Google Scholar
  18. Munro, H. N.: The role of insulin in the regulation of protein metabolism. A review. Scot. med. J. 1, 285 (1956)Google Scholar
  19. Nasrallah, S., Al-Khalidi, U.: Nature of purines excreted in urine during muscular exercise. J. appl. Physiol. 19, 246–248 (1964)Google Scholar
  20. Poortmans, J. R., Siest, G., Calteau, M. M., Houot, O.: Distribution of plasma amino acids during submaximal prolonged exercise. Europ. J. appl. Physiol. 32, 143–147 (1974)Google Scholar
  21. Posefsky, T., Felig, P., Tebin, J. D., Seeldner, J. S., Cahill, G. F., Jr.: Amino acids balance across tissues of the forearm in postabsorptive man. Effects of insulin at two dose levels. J. clin. Invest. 48, 2273–2282 (1969)Google Scholar
  22. Schalch, D. S.: The influence of physical stress and exercise on growth hormone and insulin secretion in man. J. Lab. clin. Med. 69, 256–269 (1967)Google Scholar
  23. Schwarz, F. A., Lawrence, W. J., Jr., Roberts, K. E.: Elevation of peripheral blood ammonia following muscular exercise. Proc. Soc. exp. Biol. (N.Y.) 98, 548–550 (1958)Google Scholar
  24. Vranic, M., Wrenshall, G. A.: Exercise, insulin and glucose turnover in dogs. Endocrinology 85, 165–171 (1969)Google Scholar
  25. Waterflow, J. C.: Lysine turnover in man measured by intravenous infusion of L-14 C-lysine. Clin. Sci. 33, 33 (1967)Google Scholar
  26. Young, V. R.: Role of skeletal and cardiac muscle in the regulation of protein metabolism. In: Mammalian protein metabolism, H. N. Munro, ed., Vol. 4, Chapter 30. New York: Academic Press 1970Google Scholar

Copyright information

© Springer-Verlag 1976

Authors and Affiliations

  • V. Brodan
    • 1
  • E. Kuhn
    • 1
  • J. Pechar
    • 1
  • D. Tomková
    • 1
  1. 1.Research Centre of Metabolism and Nutrition of the Institute for Clinical and Experimental MedicinePrague 4čSSR

Personalised recommendations