Skip to main content
Log in

Simultaneous estimation of nicotine and cotinine levels in biological fluids using high-resolution capillary-column gas chromatography combined with solid phase extraction work-up

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

A rapid and sensitive capillary gas-chromatographic method with nitrogen-sensitive detection is reported for the simultaneous analysis of nicotine and cotinine levels occurring in the plasma, saliva, and urine of regular tobacco smokers. The proposed assay has a linear output, has satisfactory accuracy over the range of concentrations of both amines encountered in active smokers, and has also been successful in the analysis of the urine samples of passive smokers. Its lower limit of sensitivity is 0.2 ng of nicotine and 0.5 ng of cotinine per ml of plasma or saliva or per 100 μl of urine.

The beneficial characteristics of the presented method were achieved by the combination of solid phase extraction of 0.1–1.0 ml of fluid specimens, capillary column gas chromatography with splitless injection and nitrogen sensitive detection, and the use of separate, structurally analogous compounds as internal standards for nicotine. The suitability of the assay is shown by plasma concentration-time curves of nicotine and cotinine in a steady smoker during a 24 hours period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benowitz NL (1986) Ann. Rev. Med. 37: 21

    Google Scholar 

  2. Horning EC, Horning MG, Carroll DI, Stillwell RN & Dzidic I (1973) Life Sciences 13: 1331

    Google Scholar 

  3. Langone JJ, Gjika HB & VanVunakis H (1973) Biochemistry 12: 5025

    Google Scholar 

  4. Haines CFJr, Mahajan DK, Miljkovic D et al. (1976) Clin. Pharmacol. Ther. 16: 1083

    Google Scholar 

  5. Castro A, Monji N, Ali H, Malkus H, Eisenhart W, McKennis HJr & Bowman ER (1979) Clinica Chimica Acta 95: 473

    Google Scholar 

  6. Matsukura S, Sakamoto N, Seino Y et l. (1979) Clin. Pharmacol. Ther. 25: 555

    Google Scholar 

  7. Hill P & Marquardt H (1980) Clin. Pharmacol. Ther. 27: 652

    Google Scholar 

  8. Castro A, Monji N, Ali H, Yi JM, Bowman ER & McKennis HJr (1980) Eur. J. Bioch. 104: 331

    Google Scholar 

  9. Langone JJ & VanVunakis H (1982) Methods in Enzymology 84: 628

    Google Scholar 

  10. Greenberg R, Etzel R, Haley N & Loda H (1984) Am. J. Epidemiology 118: 435

    Google Scholar 

  11. Knight GJ, Wylie P, Holman MS & Haddow JE (1985) Clin. Chem. 31: 118

    Google Scholar 

  12. Hansel MC, Rowell FR, Landon J & Sidki AM (1986) Ann. Clin. Biochem. 23: 596

    Google Scholar 

  13. Watson ID (1977) J. Chromatogr. 143: 203

    Google Scholar 

  14. Maskarinec MP, Harvey RW & Caton JE (1978) J. Anal. Toxicol. 2: 124

    Google Scholar 

  15. Kyerematen GA, Damiano MD, Dvorchik BH & Vesell ES (1982) Clin. Pharm. Ther. 32: 769

    Google Scholar 

  16. Beckett AH & Triggs EJ (1966) Nature 211: 1415

    Google Scholar 

  17. Feyerabend C & Russell MAH (1980) Analyst 105: 998

    Google Scholar 

  18. Stehlik G, Kainzbauer J, Tausch H & Richter O (1982) J. Chromatogr. 232: 295

    Google Scholar 

  19. Blache D, Thevenon C, Ciavatti M & Renaud S (1984) Anal. Biochem. 143: 316

    Google Scholar 

  20. Hartvig P, Ahnfelt N-O, Hammarlund M & Vessman J (1979) J. Chromatogr. 173: 127

    Google Scholar 

  21. Isaac PF & Rand MJ (1972) Nature 236: 308

    Google Scholar 

  22. Hengen N & Hengen M (1978) Clin. Chem. 24: 50

    Google Scholar 

  23. Feyerabend C & Russell MAH (1979) J. Pharm. Pharmacol. 31: 73

    Google Scholar 

  24. Grubner O & First MW (1980) Anal. Chem. 52: 1755

    Google Scholar 

  25. Kogan MJ, Vereby K, Jaffee JH & Mule SJ (1981) J. Forens. Sci. 26: 6

    Google Scholar 

  26. Jacob PIII, Wilson M & Beowitz NL (1981) J. Chromatogr. 222: 61

    Google Scholar 

  27. Curvall M, Kazemi-Vala E & Enzell CR (1982) J. Chromatogr. 232: 283

    Google Scholar 

  28. Davis RA (1986) J. Chrom. Sci. 24: 134

    Google Scholar 

  29. Thompson JA, Ho M-S & Petersen DR (1982) J. Chromatogr. 231: 53

    Google Scholar 

  30. Falkman SE, Burrows IE, Lundgren RA & Page BFJ (1975) Analyst 100: 99

    Google Scholar 

  31. Dow J & Hall K (1978) J. Chromatogr. 153: 521

    Google Scholar 

  32. Gruenke LD, Beelen TC, Cymerman Craig J & Petrakis NL (1979) Anal. Biochem. 94: 411

    Google Scholar 

  33. Daenens P, Laruelle L, Callewaert K, DeSchepper P, Galeazzi R & VanRossum J (1985) J. Chromatogr. 342: 79

    Google Scholar 

  34. Freeman RR, ed. (1981) High Resolution Gas Chromatography, 2nd edition (pp 59–62) Hewlett-Packard Company, Palo Alto, California, USA

    Google Scholar 

  35. Benowitz NL, Jacob PIII, Jones RT & Rosenberg J (1984) J. Pharmacol. Exp. Ther. 221: 368

    Google Scholar 

  36. Benowitz NL, Kuyt F, Jacob PIII, Jones RT & Osman AL (1983) Clin. Pharmacol. Ther. 34: 604

    Google Scholar 

  37. VanHorne KC, ed. (1985) Sorbent Extraction Technology, 1st edition. Analytichem International, Inc., Harbor City, California, USA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teeuwen, H.W.A., Aalders, R.J.W. & Van Rossum, J.M. Simultaneous estimation of nicotine and cotinine levels in biological fluids using high-resolution capillary-column gas chromatography combined with solid phase extraction work-up. Molecular Biology Reports 13, 165–175 (1988). https://doi.org/10.1007/BF00444313

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00444313

Key words

Navigation