Skip to main content
Log in

Endogenous degradation of rat liver chromatin studied by agar gel electrophoresis of nuclei

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Direct agar gel electrophoresis of incubated rat liver nuclei revealed that most of the chromatin is rapidly converted to stable, large fragments, showing identical electrophoretic mobility. Short and long term incubation gave the same results. The analysis of deproteinized DNA under nondenaturing as well as denaturing conditions showed, however, a correlation between the DNA size pattern and the time of incubation. Our data on the persistance of large and uniform in size chromatin fragments despite the presence of cleaved DNA in them may indicate naturally footprinted regions of chromatin, implying most probably some strong ordered interaction of chromatin constituents. It seems that some substantial unknown features of higher order structure of chromatin are preserved in rat liver nuclei isolated and digested under the experimental conditions used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Walker PR, Sikorska M & Whitfield JF (1986) J. Biol. Chem. 261: 7044–7051

    Google Scholar 

  2. Einck L, Fagan J & Bustin M (1986) Biochemistry 25: 7062–7068

    Google Scholar 

  3. Walker PR & Sikorska M (1986) biochemistry 25: 3839–3845

    Google Scholar 

  4. Walker PR & Sikorska M (1987) J. Biol. Chem. 262: 12218–12222

    Google Scholar 

  5. Walker PR & Sikorska M (1987) J. Biol. Chem. 262: 12223–12227

    Google Scholar 

  6. Hotbohm H (1986) Int. J. Biol. Macromol. 8: 114–120

    Google Scholar 

  7. Felsenfeld G & McGhee JD (1986) Cell 44: 375–377

    Google Scholar 

  8. Brust R (1986) Z. Naturforsch. 41c: 910–916

    Google Scholar 

  9. Dixon DK & Burkholder CD (1985) Exptl. Cell Res. 156: 563–569

    Google Scholar 

  10. Strätling WH, Dolle A & Sippel AE (1986) Biochemistry 25: 495–502

    Google Scholar 

  11. Strätling WH (1987) Biochemistry 26: 7893–7899

    Google Scholar 

  12. Gross DS & Garrard WT (1987) Trends Biochem. Sci. 12: 293–297

    Google Scholar 

  13. Mathis D, Oudet P & Chambon P (1980) Progr. Nucl. Acids Res. Mol. Biol. 24: 1–55

    Google Scholar 

  14. Igo-Kemenes T, Horz W & Zachau HG (1982) Annu. Rev. Biochem. 51: 89–121

    Google Scholar 

  15. Butler PJG (1983) CRC Rev. Biochem. 15: 57–91

    Google Scholar 

  16. Tsanev R (1983) Molec. Biol. Rep. 9: 9–17

    Google Scholar 

  17. Reeves R (1984) Biochim. Biophys. Acta 782: 343–393

    Google Scholar 

  18. Ruiz-Carrillo A, Puigdomenech P, Eder G & Lurz R (1980) Biochemistry 19: 2544–2554

    Google Scholar 

  19. Strätling WH & Klingholz R (1981) Biochemistry 20: 1386–1392

    Google Scholar 

  20. Puigdomenech P & Ruiz-Carrillo A (1982) Biochim. Biophys. Acta 696: 267–274

    Google Scholar 

  21. Weintraub H (1984) Cell 38: 17–27

    Google Scholar 

  22. Zentgraf H & Franke WW (1984) J. Cell Biol. 99: 272–286

    Google Scholar 

  23. Subirana JA, Munoz-Guerra S, Aymami J, Radermacher M & Frank J (1985) Chromosoma (Berl) 91: 377–390

    Google Scholar 

  24. Finch JT & Klug A (1976) Proc. Natl. Acad. Sci. USA 73: 1897–1901

    Google Scholar 

  25. Widom J & Klug A (1985) Cell 43: 207–213

    Google Scholar 

  26. Renz M (1979) Nucl. Acids Res. 6: 2761–2767

    Google Scholar 

  27. Rose SM & Garrard WT (1984) J. Biol. Chem. 259: 8534–8544

    Google Scholar 

  28. Cohen RB & Shefferey M (1985) J. Mol. Biol. 182: 109–129

    Google Scholar 

  29. Hewish DR & Burgoyne LA (1973) Biochem. Biophys. Res. Commun. 52: 504–510

    Google Scholar 

  30. Sagan DR & Butterworth PHW (1981) Cell Biol. Int. Rep. 5: 59–67

    Google Scholar 

  31. Vanderbilt JN, Bloom KS & Anderson JN (1982) J. Biol. Chem. 257: 13009–13017

    Google Scholar 

  32. Hibino J & Sugano N (1985) J. Biochem. 98: 1583–1590

    Google Scholar 

  33. Kokileva L (1979) Mol. Biol. Rep. 5: 171–174

    Google Scholar 

  34. Kokileva L (1981) Int. J. Biochem. 13: 483–488

    Google Scholar 

  35. Noll M (1974) Nucl. Acids Res. 1: 1573–1578

    Google Scholar 

  36. Maniatis T, Jeffrey A & Van deSande H (1975) Biochemistry 14: 3787–3794

    Google Scholar 

  37. Blobel G & Potter VR (1966) Science 154: 1662–1665

    Google Scholar 

  38. Chauveau J, Moule Y & Rouiller Ch (1956) Exptl. Cell Res. 11: 317–322

    Google Scholar 

  39. Dessev GN, Venkov CD & Tsanev RG (1969) Eur. J. Biochem. 7: 280–285

    Google Scholar 

  40. Kokileva LB, Mladenova I & Tsanev RG (1971) FEBS Letters 16: 17–20

    Google Scholar 

  41. Tsanev R, Staynov D, Kokileva L & Mladenova I (1969) Anal. Biochem. 30: 66–85

    Google Scholar 

  42. Marmur J (1961) J. Mol. Biol. 3: 208–218

    Google Scholar 

  43. Matyašova J & Skalka M (1986) Studia Biophys. 114: 283–292

    Google Scholar 

  44. Drinkwater ED, Wilson PJ, Skinner JD & Burgoyne LA (1987) Nucl. Acids Res. 15: 8087–8103

    Google Scholar 

  45. Thomas JO, Rees C & Pearson EC (1985) Eur. J. Biochem. 147: 143–151

    Google Scholar 

  46. Ausio J, Borochov N, Seger D & Eisenberg H (1984) J. Mol. Biol. 177: 373–398

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kokileva, L. Endogenous degradation of rat liver chromatin studied by agar gel electrophoresis of nuclei. Molecular Biology Reports 13, 139–143 (1988). https://doi.org/10.1007/BF00444309

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00444309

Key words

Navigation