Skip to main content
Log in

Accessibility of an epitope common to all histone H3 variants in folded and unfolded chromatin as studied by a monoclonal antibody

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

In a recent publication the isolation and some characteristics of an anti-histone 3 monoclonal antibody, 1GB3 were described (Muller et al. FEBS Lett. 182: 459–464, 1985). We now report that the epitope recognized is phylogenetically conserved and located in the N-terminal part of H3, most likely between residues 40 and 50. Using the ELISA technique we found this region to be accessible in chromatin to the monoclonal antibody. The effect of non-ionic detergents on the adsorbtion of chromatin on microtiter plates was studied in this context.

Immunological analysis of the reaction of the monoclonal antibody with chromatin by immunoinhibition and immunosedimentation shows that the H3 epitope is accessible in both folded and unfolded chromatin fibre as well as in high- and low-molecular weight oligonucleosomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BSA:

Bovine srum albumin

mab:

Monoclonal antibody

PBS:

Phosphate buffered saline

PMSF:

Phenylmethyl sulfonyl fluoride

References

  1. Bustin M (1979) Current topics in Microbiology and Immunology 88: 105–142

    Google Scholar 

  2. Benezra R, Blankstein LA, Stollar BD & Levy SB (1981) J. Biol. Chem. 256: 6837–6841

    Google Scholar 

  3. Takahashi K & Tashiro Y (1979) Eur. J. Biochem. 97: 353–360

    Google Scholar 

  4. Mazen A, DeMurcia G, Bernard S, Pouget J & Champagne M (1982) Eur. J. Biochem. 127: 168–176

    Google Scholar 

  5. Dimitrov SI, Russanova VR & Pashev IG (1987) The EMBO J. 6: 2387–2392

    Google Scholar 

  6. Muller S, Eraid M, Burggraf E, Couppez M, Sautiere P, Champagne M & VanRegenmortel MHV (1982) The EMBO J. 1: 939–944

    Google Scholar 

  7. Muller S, Mazen A, Martinage A & VanRegenmortel MHV (1984) The EMBO J. 3: 2431–2436

    Google Scholar 

  8. Turner BM (1982) Chromosoma (Berl.) 87: 345–357

    Google Scholar 

  9. Mendelson E & Bustin M (1984) Biochemistry 23: 3459–3466

    Google Scholar 

  10. Mendelson E, Smith BJ & Bustin M (1984) Biochemistry 23: 3466–3471

    Google Scholar 

  11. Laskov R, Muller S, Hochberg M, Giloh H, VanRegenmortel MHV & Eilat D (1984) Eur. J. Immunol. 14: 74–81

    Google Scholar 

  12. Muller S, Jockers-Wretou E, Sekeris CE, VanRegenmortel MHV & Bautz FA (1985) FEBS Lett. 182: 459–464

    Google Scholar 

  13. Shindo H, Mc Ghee JD & Cohen JS (1980) Biopolymers 19: 523–538

    Google Scholar 

  14. Blobel G & Potter VR (1966) Science 154: 1662–1665

    Google Scholar 

  15. Johns EW (1977) Meth. Cell Biol. 14: 183–203

    Google Scholar 

  16. Johns EW (1967) Biochem. J. 105: 611–614

    Google Scholar 

  17. Ivanova VS (1984) Prep Biochem. 14: 405–416

    Google Scholar 

  18. Lekanidou R, Tsitilou SG & Kafatos FC (1980) Insect. Biochem. 10: 367–374

    Google Scholar 

  19. Johns EW, Forrester S & Riches PL (1972) Arch. Biochem. Biophys. 132: 287–296

    Google Scholar 

  20. Weintraub H, Patter K & VanLente F (1975) Cell 6: 85–110

    Google Scholar 

  21. Panyim S & Chalkley R (1969) Arch. Biochem. Biophys. 130: 337–346

    Google Scholar 

  22. Burch JBE & Martinson HG (1981) Nucleic Acids Res., 9: 4367–4385

    Google Scholar 

  23. Hartley BS (1970) Biochem. J. 119: 805–822

    Google Scholar 

  24. Bustin M, Simpson RT, Sperling R & Goldblatt D (1977) Biochemistry 16: 5381–5385

    Google Scholar 

  25. Weber K, Bibring T & Osborn M (1975) Exp. Cell Res. 95: 111–120

    Google Scholar 

  26. Russanova VR, Venkov CD & Tsanev RG (1980) Cell Differentiation 9: 339–350

    Google Scholar 

  27. Symington J, Green M & Krackmann K (1981) Proc. Natl. Acad. Sci. USA 78: 178–181

    Google Scholar 

  28. Towbin H, Staehelin T & Gordin J (1979) Proc. Natl. Acad. Sci. USA 76: 4350–4354

    Google Scholar 

  29. Goldblatt D & Bustin M (1980) Biochem. Biophys. Acta 606: 304–315

    Google Scholar 

  30. Bradford M (1976) Anal. Biochem. 72: 254–284

    Google Scholar 

  31. VonHolt C, Strickland N, Brandt WF & Strickland MS (1979) FEBS Lett. 100: 201–218

    Google Scholar 

  32. Franklin SG & Zweidler A (1977) Nature 266: 273–275

    Google Scholar 

  33. Zweidler A (1984) In: Stein GS, Stein JC & Marzluff WF (Eds) Histone Genes and Histone Gene Expression (pp. 339–371)

  34. Tsanev RG (1983) Molec. Biol. Rep. 9: 9–17

    Google Scholar 

  35. Absolom D & VanRegenmortel MHV (1977) FEBS Lett. 81: 419–422

    Google Scholar 

  36. Chipev CC (1983) Int. J. Biol. Macromol. 5: 10–16

    Google Scholar 

  37. Zweidler A (1978) Methods in Cell Biol. 17: 223–233

    Google Scholar 

  38. Gardas A & Lewartowska A (1988) J. Immunol. Methods 106: 251–255

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jockers-Wretou, E., Russanova, V. & Venkov, C. Accessibility of an epitope common to all histone H3 variants in folded and unfolded chromatin as studied by a monoclonal antibody. Molecular Biology Reports 13, 123–131 (1988). https://doi.org/10.1007/BF00444307

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00444307

Key words

Navigation