, Volume 31, Issue 1, pp 103–116 | Cite as

Rainstorm statistics conditional on soil moisture index: Temporal and spatial characteristics

  • Enrica Caporali
  • Dara Entekhabi
  • Fabio Castelli


Soil moisture is the primary hydrological state variable that controls and it is controlled by land surface processes. Assessment of feedback mechanisms between land surface and the atmosphere must involve soil moisture. The Midwestern region of the United States is used as a case example in the preliminary investigations on the hypothesis that the structure and development of storm events are influenced by soil moisture conditions. In particular we deal with the antecedent soil moisture condition influence on storm precipitation amounts and interstorm durations. The analysis based on observations indicates that when the soil moisture is low, the ensuing interstorm duration and drying period is anomalously long. We also show that storm precipitation amounts are larger when the antecedent soil moisture is anomalously high. This finding supports the hypotheses that the Summer 1993 floods over Midwestern United States were partially forced by moist antecedent conditions.

Key words

Rainfall Soil moisture Antecedent precipitation index Hydrometeorology 


L'umidità del suolo è la variabile idrological di stato primaria che controlla ed è a sua volta controllata dai processi sulla superficie del terreno. La quantificazione dei meccanismi di retroazione fra superficie del terreno ed atmosfera deve comprendere l'umidità del suolo. La regione centro-occidentale degli Stati Uniti è usata come esempio in uno studio preliminare sull'ipotesi che la struttura e lo sviluppo di eventi di precipitazione siano influenzati dalle condizioni di umidità del suolo. In particolare, viene considerata l'influenza delle condizioni antecedenti di umidità del suolo sulle quantità di precipitazione e gli intervallamenti dei vari eventi. Le analisi basate sulle osservazioni indicano, che quando l'umidità del suolo è bassa, il periodo secco di attesa della pioggia successiva è più lungo del normale. Viene anche mostrato che le quantità di precipitazione sono maggiori quando l'umidità del suolo nel periodo antecedente è più alta del normale. Questo risultato supporta l'ipotesi secondo la quale le alluvioni dell' estate del 1993 negli Stati Uniti centro-occidentali furono parzialmente causate dalle condizioni antecedenti di umidità del suolo.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chahine M.T., ‘The hydrological cycle and its influence on climate’, Nature, 359 (1992) 373–380.Google Scholar
  2. 2.
    McNab A.L., ‘Climate and droughts’, Eos Trans. AGU, 40 (1989) 882–882.Google Scholar
  3. 3.
    Oglesby R.J., ‘Springtime soil moisture, natural climatic variability, and North American drought as simulated by NCAR Community Climate Model 1’, Journal of Climate, 4 (1991) 890–897.Google Scholar
  4. 4.
    Diaz H.F., ‘Drought in the United States: some aspect of major dry and wet periods in the contiguous United States, 1895–1981’, Journal of Climate and Applied Meteorology, 22 (1983) 3–16.Google Scholar
  5. 5.
    Brubaker K.L., Entekhabi D., and Eagleson P.S., ‘Estimation of continental precipitation recycling’, American Meteorological Society, 6 (1993) 1077–1089.Google Scholar
  6. 6.
    Rodriguez-Iturbe I., Entekhabi D., and Bras R.L., ‘Nonlinear dynamics of soil moisture at climate scales, 2. Chaotic analysis’, Water Resources Research, 27 (1991) 1899–1906.Google Scholar
  7. 7.
    Rodriguez-Iturbe I., Entekhabi D., and Bras R.L., ‘Nonlinear dynamics of soil moisture at climate scales, 1. Stochastic analysis’, Water Resources Research, 27 (1991) 1907–1915.Google Scholar
  8. 8.
    Entekhabi D., Rodriguez-Iturbe I., and Bras R.L., ‘Variability in large-scale water balance with land surface-atmosphere interaction’, Journal of Climate, 5 (1992) 798–813.Google Scholar
  9. 9.
    Milly P.C.D., and Dunne K.A., ‘Sensitivity of global water cycle to the water holding capacity of land’, Journal of Climate, 7 (1994) 506–626.Google Scholar
  10. 10.
    Atlas R., Wolfson N., and Terry J., ‘The effects of SST and soil moisture anomalies on GLA model simulation of the 1988 U.S. summer drought’, Journal of Climate, 6 (1993) 2034–2048.Google Scholar
  11. 11.
    Oglesby R.J., and Erickson D., ‘Soil moisture and the persistence of North American drought’, Journal of Climate, 2 (1989) 1362–1380.Google Scholar
  12. 12.
    Xue Y., and Shukla J., ‘The influence of land surface properties on Sahel climate. Part I: Desertification’, Journal of Climate, 6 (1993) 2232–2345.Google Scholar
  13. 13.
    Rind D., ‘The influence of ground moisture conditions in North america on summer climate as modeled in the GISS GCM’, Mon. Weather Rev., 110, (1982) 1487–1494.Google Scholar
  14. 14.
    Betts, A.K., Ball, K.H., Beljaars, A.C.M., Miller, M.J., and Viterbo, P., ‘Coupling between land-surface boundary layer parametrization and rainfall on local and regional scales: Lessons from the wet summer of 1993’, Fifth Symposium on Global Change Studies, January 23–28 1994, Nashville, Tennessee, American Meteorological Society (1994) pp. 174–181.Google Scholar
  15. 15.
    Roads J.O., Chen S.J., Guetterr A.K., and Gerogakakos K.P., ‘Large-scale aspects of the United States hydrologic cycle’, American Meteorological Society, 6 (1994) 1077–1089.Google Scholar
  16. 16.
    Castelli F., and Rodriguez-Iturbe I., ‘Soil moisture-atmosphere interaction in a moist semigeostrophic model of baroclinic instability’, Journal of the Atmospheric Sciences, 52 (1995) 2152–2159.Google Scholar
  17. 17.
    Georgakakos K.P., and Bae D.-H., ‘Climatic variability of soil water in the American Midwest. Part 2. Spatio-temporal analysis’, Journal of Hydrology, 162 (1994) 379–390.Google Scholar
  18. 18.
    Bae D.-H., and Georgakakos K.P., ‘Climatic variability of soil water in the American Midwest. Part 1. Hydrologic modeling’, Journal of Hydrology, 162 (1994) 355–377.Google Scholar
  19. 19.
    Kunkel K.E., ‘Climatic perspective on the 1993 flooding rains in the Upper Mississippi River Basin’, Water International, 19 (1994) 186–189.Google Scholar
  20. 20.
    Wallis J.R., Lettnemaier D.P., and Wood E.F., ‘Daily hydroclimatological data set for the continental United States’, Water Resources Research, 27 (1991) 1657–1663.Google Scholar
  21. 21.
    Saxton K., and Lenz A., ‘Antecedent retention indexes predict soil moisture’, Journal of Hydraulics Division, 4 (1967) 223–241.Google Scholar
  22. 22.
    WMO, Guide to Hydrologic Practices, World Meteorological Organization Publication No. 168, 1983.Google Scholar
  23. 23.
    Blanchard B., McFarland M., Schmugge T., and RhoadesE., ‘Estimation of soil moisture with API algorithms and microwave emission’, Water Res. Bulletin, 17 (1981) 767–773.Google Scholar
  24. 24.
    Schmugge T., Jackson T., Kustas W., and Wang J., ‘Passive microwave remote sensing of soil moisture: results from HAPEX, FIFE and MONSOON 90’, Journal of Photogrammetry and Remote Sensing, 47 (1992) 127–144.Google Scholar
  25. 25.
    Kunkel K.E., Chagnon S.A., and Angel J.R., ‘Climatic aspects of the 1993 Upper Mississippi River Basin Flood’, Bulletin of the American Meteorological Society, 75 (1994) 811–822.Google Scholar
  26. 26.
    Haan, C.T., Statistical Methods in Hydrology, The Iowa State University Press, 1987.Google Scholar
  27. 27.
    Kunkel K.E., Chagnon S.A., and Shealy R.T., ‘Temporal and spatial characteristics of heavy precipitation events in the Midwest’, Monthly Weather Review, 121 (1993) 858–866.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Enrica Caporali
    • 1
  • Dara Entekhabi
    • 2
  • Fabio Castelli
    • 3
  1. 1.Dipartimento di Ingegneria CivileUniversità di FirenzeFirenzeItaly
  2. 2.Department of Civil and Environmental EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Istituto di IdraulicaUniversità di PerugiaPerugiaItaly

Personalised recommendations