Mycopathologia

, Volume 92, Issue 2, pp 83–92 | Cite as

Aflatoxin-induced alterations in Glycine max, cv. ‘essex’ root cell membrane protein content

  • W. V. Dashek
  • S. J. Walker
  • J. D. Reynolds
  • G. C. Llewellyn
Article

Abstract

Aflatoxins (AFTs) are hepatocarcinogens, mutagens, teratogens and toxins. Isolates of AFTs-producing strains of Aspergillus flavus can grow upon both autoclaved soybeans and to a lesser extent field-grown beans. Besides inhibiting the elongation of excised, in vitro cultured soybean roots, the AFTs can impair the roots' ability to remove [14C]-leucine from a culture medium and to incorporate the amino acid into acidinsoluble, cytoplasmic protein. In this connection, exogenous AFTs once taken-up and compartmentalized by the excised roots can reduce the acid-insoluble protein content of what appears to be a non-enriched plasmalemma fraction. Here, we report a combined biochemical and microscopical attempt to determine whether the protein reduction occurs throughout the excised, in vitro-cultured root and whether the plasmalemma proteins which are affected by AFTs can be both solubilized and characterized. Histochemistry of Carnoy-fixed roots revealed a reduction in Ninhydrin-Schiff-stainability throughout the AFTs-treated root. Transmission electron microscopy of 80 000 × g pellets derived from homogenates of both non-treated (NT) and treated (T) roots provided further evidence to our previously reported marker enzyme analyses for the occurrence of the plasmalemma in the 80 000 × g pellet. Treatment of the latter with the Laemmli SDS procedure released >85% of the protein associated with the pellets obtained from homogenates of either NT or T roots. Gel permeation chromatography on Biogel-100 of released proteins from 80 000 × g pellets of both NT and T roots yielded both void volume and retarded peaks. Both the amplitude and the quantities of protein recovered within the void volume peak were less within the void volume of the T than the NT root. Polyacrylamide tube gel electrophoresis of G-100 void volume peaks of chromatographed, SDS-released proteins from the pellets revealed quantitative but not qualitative differences in Coomassie Blue-gel staining patterns between T and NT roots. These results suggest that the SDS methods which we employed could solubilize the 80 000 × g pellet proteins but that combined gel permeation chromatography and tube gel electrophoresis were not sensitive enough to reveal whether AFTs could alter the types of proteins associated with the 80 000 × g pellet (purported plasmalemma).

Keywords

Aflatoxin Void Volume Cell Membrane Protein Root Cell Membrane Membrane Protein Content 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Asao, T., G. Buchi, M. M. Abdel-Kader, S. B. Chang, E. L. Wick & G. N. Wogan, 1963. Aflatoxins B and G. J. Am. Chem. Soc. 85: 1706–1707.Google Scholar
  2. 2.
    Bean, G. A., J. A. Schillinger & W. L. Klarman, 1972. Occurrence of aflatoxins and aflatoxin-producing strains of Aspergillus flavus in soybeans. Phytopathology 62: 745–747.Google Scholar
  3. 3.
    Booz, M. L. & R. L. Travis, 1980. Electrophoretic comparison of polypeptides from enriched plasma membrane fractions from developing soybean roots. Pl. Physiol. 66: 1037–1043.Google Scholar
  4. 4.
    Booz, M. L. & R. L. Travis, 1981. Two dimensional electrophoresis of soybean root plasma membrane proteins solubilized by SDS and other detergents. Phytochemistry 20: 1773–1779.Google Scholar
  5. 5.
    Bradford, M. M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principles of protein dye binding. Analy. Biochem. 72: 248–254.Google Scholar
  6. 6.
    Butler, W. H., 1969. Aflatoxicosis in laboratory animals. In: L. A. Goldblatt (ed.), Aflatoxin: Scientific background, control and implications. Academic Press, NY.Google Scholar
  7. 7.
    Carnaghan, R. B. A., R. D. Hartley & J. O'Kelly, 1963. Toxicity and fluorescence properties of the aflatoxins. Nature 200: 1101.Google Scholar
  8. 8.
    Chao, Hai-Yen & W. V. Dashek, 1973. Hydroxyproline metabolism during mungbean and soybean seedling growth. Ann. Bot. 39: 95–105.Google Scholar
  9. 9.
    Danley, J. M., S. Staggers, S. Walker, A. Varner, G. C. Llewellyn & W. V. Dashek, 1981. Aflatoxin-induced alteration in the levels of membrane chemicals of subcellular organelles isolated from excised, incubated Glycine max, cv. ‘Essex’ roots. Mycopathologia 74: 149–161.Google Scholar
  10. 10.
    Danley, J. M., S. Staggers, S. J. Walker, A. Varner, G. C. Llewellyn & W. V. Dashek, 1982. A combined biochemical and ultrastructural analysis of aflatoxin action on the endomembrane system of plant cells. Act. Botan. 129: 5–13.Google Scholar
  11. 11.
    Dashek, W. V. & G. C. Llewellyn, 1977. Aflatoxin toxicity and mode of action in plant tissues. Ann. Nutri. Alim. 31: 841–858.Google Scholar
  12. 12.
    Dashek, W. V. & G. C. Llewellyn, 1982. Aflatoxins and plants. Adv. Pol. Microbiol. 21: 65–84.Google Scholar
  13. 13.
    Dashek, W. V., S. J. Walker, L. Adelstein, J. M. Danley, C. E. O'Rear, R. R. Mills & G. C. Llewellyn, 1982. Aflatoxin-induced alteration in soybean membrane protein. J. Am Oil Chemists' Soc. 58: 1009–1014A.Google Scholar
  14. 14.
    Dashek, W. V. & G. C. Llewellyn, 1983. Mode of action of the hepatocarcinogens, aflatoxins in plant systems: A review. Mycopathologia 81: 83–94.Google Scholar
  15. 15.
    Gupta, S. K. & T. A. Venkitasubramanian, 1975. Production of aflatoxins on soybeans. Appl. Microbiol. 29: 834–836.Google Scholar
  16. 16.
    Hesseltine, C. W., O. L. Shotwell, J. J. Ellis & R. D. Stubblefield, 1966. Aflatoxin formation by Aspergillus flavus. Bacteriol. Rev. 30: 795–805.Google Scholar
  17. 17.
    Hodges, T. K., R. T. Leonard, C. E. Bracker & T. W. Keenan, 1972. Purification of an ion-stimulated adenosine triphosphatase from plant roots: Association with plant membranes. Proc. Natl. Acad. Sci. USA 69: 3307–3311.Google Scholar
  18. 18.
    Holleman, J. M. & J. L. Key, 1967. Inactive and protein precursor pools of amino acids in the soybean hypocotyl. Pl. Physiol. 42: 29–36.Google Scholar
  19. 19.
    Jones, H. C., J. C. Chancey, W. A. Morton, W. V. Dashek & G. C. Llewellyn, 1980. Toxic responses of pollen and soybeans to aflatoxins. Mycopathologia 72: 67–73.Google Scholar
  20. 20.
    Kulik, M. M. & C. E. Holoday, 1967. Aflatoxin: A metabolic product of several fungi. Mycopathol. Mycol. Appl. 30: 137–140.Google Scholar
  21. 21.
    Kunimoto, T., Y. Kurimoto, K. Aibara & K. Miyaki, 1974. Inhibition of nucleoside transport by aflatoxins and sterigmatocystin. Cancer Res. 34: 968–973.Google Scholar
  22. 22.
    Laemmli, U. K., 1970. Cleavage of structural proteins during the assembly of the hood of bacteriophage T4. Nature 227: 680–685.Google Scholar
  23. 23.
    Llewellyn, G. C., W. W. Cahill, J. E. Robbers & W. G. Hansen, 1973. A rapid and simplified method for preparation of pure aflatoxin B1. Dev. Indus. Microbiol. 14: 325–330.Google Scholar
  24. 24.
    Nagahashi, G., R. T. Leonard & W. W. Thomson, 1978. Purification of plasma membrane from roots of barley. Specificity of the phosphotungstic acid-chromic acid stains. Pl. Physiol. 61: 993–999.Google Scholar
  25. 25.
    Nagarajan, V., R. V. Bhat & P. G. Tupule, 1973. Aflatoxin production in some varieties of soybeans (Glycine max). Experientia 29: 1302–1303.Google Scholar
  26. 26.
    Sheretz, P. C., T. Eadie, J. W. Young & G. C. Llewellyn, 1976. Aflatoxin occurrence on raw and cooked york soybeans inoculated with three Aspergillus isolates. J. Assoc. Offic. Anal. Chem. 59: 662–665.Google Scholar
  27. 27.
    Shotwell, O. L., E. E. Vandegraft & C. W. Hesseltine, 1978. Aflatoxin formation on sixteen soybean varieties. J. Assoc. Offic. Anal. Chem. 61: 574–577.Google Scholar
  28. 28.
    Stoloff, L., 1977. Aflatoxins — An overview. In: J. V. Rodricks, C. W. Hesseltine & M. A. Melman (eds), Mycotoxins and human health. Academic Press, NY.Google Scholar
  29. 29.
    Topsy, K., 1977. Studies on the production of aflatoxins by Aspergillus flavus on soybeans and other Legumes. Ann. Nutri. Alim. 31: 625–634.Google Scholar
  30. 30.
    Truelove, B., D. E. Davis & O. C. Thomson, 1970. The effects of aflatoxin B1 on protein synthesis by cucumber cotyledon discs. Can. J. Bot. 48: 485–591.Google Scholar
  31. 31.
    Walker, S. J., G. C. Llewellyn, E. B. Lillehoj & W. V. Dashek, 1983. Uptake and subcellular distribution of aflatoxin B1 by excised, cultured soybean roots and toxin effects on root elongation. Environ. Exp. Bot. 23 (in press).Google Scholar
  32. 32.
    Wogan, G. N., 1965. Mycotoxins in foodstuffs. Massachusetts Institute Technology Press, Cambridge, MA.Google Scholar
  33. 33.
    Young, J. W., W. V. Dashek & G. C. Llewellyn, 1978. Aflatoxin B1 influence on excised soya-bean root growth, 14C-leucine uptake and incorporation. Mycopathologia 66: 91–97.Google Scholar

Copyright information

© Martinus Nijhoff/Dr W. Junk Publishers 1985

Authors and Affiliations

  • W. V. Dashek
    • 1
    • 2
  • S. J. Walker
    • 2
  • J. D. Reynolds
    • 3
  • G. C. Llewellyn
    • 3
  1. 1.Department of BiologyAtlanta UniversityAtlantaUSA
  2. 2.Department of BiologyWest Virginia UniversityMorgantownUSA
  3. 3.Department of BiologyVirginia Commonwealth UniversityRichmondUSA

Personalised recommendations