Roux's archives of developmental biology

, Volume 195, Issue 1, pp 33–38 | Cite as

Is homarine a morphogen in the marine hydroid Hydractinia?

  • Stefan Berking


Homogenate of coelenterate tissue interferes with metamorphosis in Hydractinia and pattern formation in both Hydractinia, and Hydra. From the extracts two fractions comprising low-molecular-weight compounds with strong metamorphosis-inhibiting activity were separated. One of these contains, as the active compound, homarine (N-methyl picolinic acid). Homarine concentrations down to 10−6 mol/l stop or retard metamorphosis. High concentrations block the continuation of metamorphosis as long as they are maintained in the culture medium and treatment with homarine during metamorphosis influences the proportioning of the future polyp's body pattern. Most of the homarine found in Hydra tissue derives from Artemia given as food. It is not identical with inhibitor I, an activity partially purified from Hydra tissue, which prevents head and foot formation in Hydra.

Key words

Hydractinia Hydra Homarine Nicotinamide Pattern formation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackermann D (1953) Über das Vorkommen von Homarin, Trigonellin und einer neuen Base Anemonin in der Anthozoa Anemonia sulcata. Z Chem 295:1–9Google Scholar
  2. Beilsteins Handbuch der Organischen Chemie (1979) Beilstein-Institut für Literatur der Organischen Chemie. Springer, Berlin Heidelberg New York, p 30, vol 22, parts 3, 4Google Scholar
  3. Berking S (1977) Bud formation in Hydra: Inhibition by an endogenous morphogen. Wilhelm Roux's Arch 181:215–225Google Scholar
  4. Berking S (1979) Analysis of head and foot formation in Hydra by means of an endogenous inhibitor. Wilhelm Roux's Arch 186:189–201Google Scholar
  5. Berking S (1984) Metamorphosis of Hydractinia echinata. Insights into pattern formation of hydroids. Wilhelm Roux's Arch 193:370–378Google Scholar
  6. Caplan AI (1984) Cartilage. Sci Am 251:82–90Google Scholar
  7. Caplan AI, Zwilling E, Kaplan NO (1968) 3-Acetylpyridine: effects in vitro related to teratogenic activity in chick embryos. Science 160:109–110Google Scholar
  8. Gasteiger EL, Gergen J, Haake P (1955) A study of the distribution of homarine (N-methyl picolinic acid). Biol Bull 109:345–346Google Scholar
  9. Gilbert DS (1975) Axoplasm chemical composition in Myxicola and solubility properties of its structural proteins. Biochemistry 59:303–319Google Scholar
  10. Klimek F (1979) Untersuchungen zur Separation and Aggregation von Hydrazellen. Ph D Thesis, University of TübingenGoogle Scholar
  11. Müller WA (1984) Retinoids and pattern formation in a hydroid. J Embryol Exp Morphol 81:253–271Google Scholar
  12. Müller WA, Buchal G (1973) Metamorphose-Induktion bei Planulalarven. II. Induktion durch monovalente Kationen: Die Bedeutung des Gibbs-Donnan-Verhältnisses und der Na+/K+ — ATPase. Wilhelm Roux's Arch 173:122–135Google Scholar
  13. Netherton JC, Gurin S (1982) Biosynthesis and physiological role of homarine in marine shrimp. J Biol Chem 257:11971–11975Google Scholar
  14. Welsh JH, Prock PB (1958) Quarternary ammonium bases in Coelenterates. Biol Bull 115:551–561Google Scholar

Copyright information

© Springer-Verlag 1986

Authors and Affiliations

  • Stefan Berking
    • 1
  1. 1.Zoologisches Institut der Universität HeidelbergHeidelbergFederal Republic of Germany

Personalised recommendations