Skip to main content
Log in

Oxygen and nitrate reduction kinetics of a nonflocculating strain of Zoogloea ramigera

  • General Papers
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The oxygen and nitrate reduction kinetics of a nonflocculating strain of Zoogloea ramigera were determined. Axenic, nitrate-reducing bacterial suspensions were acclimated to various oxygen levels in a chemostat while measuring nitrate reduction in the presence of high ammonium nitrogen concentrations. Significant nitrate reduction was observed at oxygen concentrations up to 8 mg L−1. Oxygen consumption was inhibited by oxygen concentrations in excess of 2 mg L−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahlberg, J., E. Nilson & J. Walsh (1972) The Theory of Splines and their Applications. Academic Press, New York

    Google Scholar 

  • APHA (1971) Standard Methods for the Examination of Water and Wastewater. 13th edn. Amer. Public Health Assoc.

  • Borkowski, J.D. & M.J. Johnson (1967) Experimental evaluation of liquid film resistance in oxygen transport to microbial cells. Appl. Microbiol. 15: 1483–1491

    Google Scholar 

  • Dixon, M. & E.C. Webb (1979) Enzymes. 3rd edn. Academic Press

  • Downey, R.J. (1966) Nitrate reductase and respiratory adaptation in Bacillus stearothermophilus. J. Bacteriol. 91: 634–641

    Google Scholar 

  • Downey, R.J., D.F. Kiszkiss & J.H. Nuner (1969) Influence of oxygen on development of nitrate respiration in Bacillus stearothermophilus. J. Bacteriol. 98: 1056–1062

    Google Scholar 

  • Dugan, P.R. & D.G. Lundgren (1960) Isolation of a floc-forming organism Zoogloea ramigera and its culture in complex and synthetic media. Appl. Microbiol. 8: 357–361

    Google Scholar 

  • Finn, R.K. (1954) Agitation-aeration in the laboratory and in industry. Bacteriol. Rev. 18: 254–264

    Google Scholar 

  • Harrison, D.E.F. & J.E. Loveless (1971) Transient responses of facultatively anaerobic bacteria growing in chemostat culture to a change from anaerobic to aerobic conditions. J. Gen. Microbiol. 68: 35–45

    Google Scholar 

  • Harrison, D.E.F. & S.J. Pirt (1967) The influence of dissolved oxygen concentration on the respiration and glucose metabolism of Klebsiella aerogenes during growth. J. Gen. Microbiol. 46: 193–194

    Google Scholar 

  • Jirka, A. & M. Carter (1975) Micro semi-automated analysis for surface and wastewater for COD. Anal. Chem. 47: 1397–1407

    Google Scholar 

  • Johnson, M.J. & J. Borkowski (1967) Long-lived steam-sterilizable membrane probes for dissolved oxygen measurement. Biotechnol. Bioeng. 9: 635–645

    Google Scholar 

  • Kopp, J.F. & G.D. McKee (1979) Methods for Chemical Analysis of Water and Wastes. Envir. Monit. Suppl. Lab., Off. Res. Dev., Cincinnati, Oh., U.S. EPA-600/4-79-020

    Google Scholar 

  • Krul, J.M. & R. Veeningen (1977) The synthesis of the dissimilatory nitrate reductase under aerobic conditions in a number of denitrifying bacteria, isolated from activated sludge and drinking water. Water Res. 11: 39–43

    Google Scholar 

  • Kyryacos, G. & C.E. Boord (1957) Separation of hydrogen, oxygen, nitrogen, methane, and carbon monoxide by gas absorption chromatography. Anal. Chem. 29: 787–797

    Google Scholar 

  • Lloyd, D., L. Boddy & K.J.P. Davies (1987) Persistence of bacterial denitrification capacity under aerobic conditions: the rule rather than the exception. FEMS Microbiol. Ecol. 45: 185–190

    Google Scholar 

  • Maclenna, D.G., J.C. Ousby, R.B. Vasey & N.T. Cotton (1971) The influence of dissolved oxygen on Pseudomonas AM1 grown on methanol in continuous culture. J. Gen. Microbiol. 69: 395–404

    Google Scholar 

  • Marquardt, D.C. (1963) An algorithm for least-squares estimation of non-linear parameters. J. Indust. Appl. Math. 11: 431–441

    Google Scholar 

  • Matsubara, T. (1971) Studies on denitrification. XIII. Some properties of the N2O-anaerobically grown cell. J. Biochem. 69: 991–1001

    Google Scholar 

  • Mechsner, K. & K. Wuhrmann (1963) Beitrag zur Kenntnis der mikrobiellen Denitrifikation. Pathol. Microbiol. 579–591

  • Meiklejohn, J. (1940) Aerobic denitrification. Ann. Appl. Biol. 27: 558–573

    Google Scholar 

  • Nagai, S., T. Mori & S. Aiba (1973) Investigation of energetics of methane-utilizing bacteria in methane-limited and oxygen-limited chemostat cultures. J. App. Chem. Biol. 23: 549–559

    Google Scholar 

  • Owen, S.P. & J.J. Johnson (1955) Continuous shake-flask propagator for yeast and bacteria. Agr. and Food Chem. 3: 606–608

    Google Scholar 

  • Payne, W.J., P.S. Riley & C.D. CoxJr (1971) Separate nitrite, nitric oxide, and nitrous oxide reducing fractions from Pseudomonas perfectomarinus. J. Bacteriol. 106: 356–361

    Google Scholar 

  • Payne, W.M. (1973) Reduction of nitrogenous oxides by microorganisms. Bacteriol. Rev. 37: 409–452

    Google Scholar 

  • Phillips, D.H. & M.J. Johnson (1961) Aeration in fermentations. J. Biochem. Microbiol. Technol. Eng. 3: 277

    Google Scholar 

  • Pichinoty, F. & L. d'Ornano (1961a) Sur le mecanisme de l'inhibition par l'oxygene de la denitrification bacterienne. Biochim. Biophys. Acta 52: 386–389

    Google Scholar 

  • Pichinoty, F. & L. d'Ornano (1961b) Inhibition by oxygen of biosynthesis and activity of nitrate-a-reductuse in Aerobacter aerogenes. Nature 191: 879–881

    Google Scholar 

  • Pirt, S.J. (1957) The oxygen requirement of growing cultures as determined by means of the continuous culture technique. J. Gen. Microbiol. 16: 59–75

    Google Scholar 

  • Pirt, S.J. (1975) Principles of Microbe and Cell Cultivation. John Wiley & Sons, New York

    Google Scholar 

  • Robertson, L.A. & J.G. Kuenen (1984) Aerobic denitrification — old wine in new bottles? Antonie van Leeuwenhoek 50: 525–544

    Google Scholar 

  • Robertson, L.A. & J.G. Kuenen (1984) Aerobic denitrification: a controversy revived. Arch. Microbiol. 139: 351–354

    Google Scholar 

  • Schmidt, V.B. & W.D. Kampf (1962) The influence of oxygen on the denitrification efficiency of Pseudomonas fluorenscens. Arch. Hyg. Backt. 146: 171–182

    Google Scholar 

  • Sinclair, P.R. & D.C. White (1970) Effect of nitrate, fumarate, and oxygen on the formation of the membrane-bound electron transport system of Haemophilus parainfluenzae. J. Bacteriol. 101: 365–372

    Google Scholar 

  • Skerman, V.B.D. & I.C. MacRae (1957a) The influence of oxygen on the reduction of nitrite by washed suspensions of adapted cells of Pseudomonas denitrificans. Can. Jour. Microbiol. 3: 215–230

    Google Scholar 

  • Skerman, V.B.D. & I.C. MacRae (1957b) The influence of oxygen on the reduction of nitrate by adapted cells of Pseudomonas denitrificans. Can Jour. Microbiol. 3: 505–530

    Google Scholar 

  • Strand, S.E. (1982) Concurrent oxygen uptake and dentirification by microbial films and suspensions. (PhD thesis). Pennsylvania State University, University Park, Pennsylvania

    Google Scholar 

  • Tiren, T., J. Thorin & H. Nommik (1976) Denitrification measurements in lakes. Acta Agricult. Scand. 26: 175–184

    Google Scholar 

  • Unz, R.F. (1965) The isolation and characterization of the predominant bacteria in naturally occurring Zoogloea ramigera colonies. (Ph.D. Thesis). Rutgers Univ., New Brunswick, New Jersey

    Google Scholar 

  • Unz, R.F. (1984) Genus IV. Zoogloea Itzigsohn 1868. Bergey's Manual of Systematic Bacteriology I: 214–219

    Google Scholar 

  • Unz, R.F. & N.C. Dondero (1967) The predominant bacteria in natural zoogloeal colonies; I. Isolation and identification. Can. Jour. Microbiol. 13: 1671–1682

    Google Scholar 

  • Van Kessel, J.F. (1977) Factors affecting the denitrification rate in two water-sediment systems. Water Res. 11: 259–267

    Google Scholar 

  • Van't Riet, J., J. Stouthamer & A.H. Planta (1968) Regulation of nitrate assimilation and nitrate respiration in Aerobacter aerogenes. J. Bacteriol. 96: 1455–1464

    Google Scholar 

  • Wilhite, W.F. & D.L. Hollis (1968) The use of porous-polymer beads for analysis of the martian atmosphere. J. Gas Chromatogr. 6: 84–88

    Google Scholar 

  • Williams, T.M. & R.F. Unz (1983) Environmental distribution of Zoogloea strains. Water Res. 17: 779–787

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Strand, S.E., McDonnell, A.J. & Unz, R.F. Oxygen and nitrate reduction kinetics of a nonflocculating strain of Zoogloea ramigera . Antonie van Leeuwenhoek 54, 245–255 (1988). https://doi.org/10.1007/BF00443583

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00443583

Key words

Navigation