Advertisement

Antonie van Leeuwenhoek

, Volume 45, Issue 3, pp 499–511 | Cite as

[1-14C] Acetate assimilation by obligate methylotrophs, Pseudomonas methanica and Methylosinus trichosporium

  • R. N. Patel
  • S. Louise Hoare
  • D. S. Hoare
Biochemistry

Abstract

The oxidation of one carbon compounds (methane, methanol, formaldehyde, formate) and primary alcohols (ethanol, propanol, butanol) supported the assimilation of [1-14C]acetate by cell suspensions of type I obligate methylotroph; Pseudomonas methanica, Texas strain, and type II obligate methylotroph, Methylosinus trichosporium, strain PG. The amount of oxygen consumed and substrate oxidized correlated with the amount of [1-14C]acetate assimilated during oxidation of C-1 compounds and primary alcohols.

Oxidation of methanol, formaldehyde, and primary alcohols in extracts of Pseudomonas methanica, Texas strain, and Methylosinus trichosporium, strain PG, was catalyzed by a phenazine methosulfate linked, ammonium ion dependent methanol dehydrogenase. The oxidation of aldehydes was catalyzed by a phenazine methosulfate linked, ammonium ion independent aldehyde dehydrogenase. Formate was oxidized by a NAD+ linked formate dehydrogenase.

Keywords

Methanol Formaldehyde Aldehyde Butanol Propanol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anthony, C. and Zatman, L. J. 1967a. The microbial oxidation of methanol. Purification and properties of the alcohol dehydrogenase of Pseudomonas sp. M 27. — Biochem.J. 104: 953–959.Google Scholar
  2. Anthony, C. and Zatman, L. J. 1967b. The microbial oxidation of methanol. The prosthetic group of the alcohol dehydrogenase of Pseudomonas sp. M 27: a new oxidoreductase prosthetic group. — Biochem. J. 104: 960–969.Google Scholar
  3. Brown, L. R., Strawinsky, R. J. and McCleskey, C. S. 1964. The isolation and characterization of Methanomonas methanooxidans. — Can. J. Microbiol. 10: 791–799.Google Scholar
  4. Clark, C. and Schmidt, E. L. 1967 Uptake and utilization of amino acids by resting cells of Nitrosomonas europaea. — J. Bacteriol. 93: 1309–1315.Google Scholar
  5. Colby, J. and Zatman, L. J. 1975. Hexose phosphate synthase and tricarboxylic acid cycle enzymes in bacterium 4 B6, an obligate methylotroph. — Biochem. J. 128: 1373–1976.Google Scholar
  6. Cox, R. B. and Quayle, J. R. 1975. The autotrophic growth of Micrococcus denitrificans on methanol. — Biochem. J. 150: 569–571.Google Scholar
  7. Davey, J. F., Whittenbury, R. and Wilkinson, J. F. 1972. The distribution in the methylobacteria of some key enzyme concerned with intermediary metabolism. — Arch. Microbiol. 87: 357–366.Google Scholar
  8. Davis, S. L. and Whittenbury, R. 1970. Fine structure of methane and other hydrocarbon utilizing bacteria. — J. Gen. Microbiol. 61: 227–232.Google Scholar
  9. Delwiche, C. C. and Finstein, M. S. 1965. Carbon and energy sources for the nitrifying autotroph Nitrobacter. — J. Bacteriol. 90: 102–107.Google Scholar
  10. Dworkin, M. and Foster, J. W. 1956. Studies on Pseudomonas methanica (Söhngen) nov. comb. —J. Bacteriol. 72: 646–659.Google Scholar
  11. Foster, J. W. and Davis, R. H. 1966 A methane dependent coccus, with notes on classification and nomenclature of obligate methane-utilizing bacteria. — J. Bacteriol. 91: 1924–1931.Google Scholar
  12. Hoare, D. S. and Gibson, J. 1964. Photoassimilation of acetate and the biosynthesis of amino acids by Chlorobium thiosulfatophilum. — Biochem. J. 91: 546–559.Google Scholar
  13. Jakoby, W. B. 1958. Aldehyde oxidation. I. Dehydrogenase from Pseudomonas fluorescens. — J. Biol. Chem. 232: 75–87.Google Scholar
  14. Johnson, P. A. and Quayle, J. R. 1964. Microbial growth on C-1 compounds. 6. Oxidation of methanol, formaldehyde and formate by methanol-grown Pseudomonas AM1. — Biochem. J. 93: 281–290.Google Scholar
  15. Kelly, D. P. 1971. Autotrophy: concepts of lithotrophic bacteria and their organic metabolism. —Annu Rev. Microbiol. 25: 177–210.Google Scholar
  16. King, T. E. and Cheldelin, V. H. 1956. Oxidation of acetaldehyde by Acetobacter suboxydans. — J. Biol. Chem. 220: 177–191.Google Scholar
  17. Lawrence, a. J. and Quayle, J. R. 1970. Alternate carbon assimilation pathways in methane-utilizing bacteria. — J. Gen. Microbiol. 63: 371–375.Google Scholar
  18. Leadbetter, E. R. and Foster, J. W. 1958. Studies on some methane-utilizing bacteria. — Arch. Mikrobiol. 30: 91–118.Google Scholar
  19. Lowry, O. H., Rosebrough, N. J., Farr, S. L. and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. — J. Biol. Chem. 193: 265–275.Google Scholar
  20. Patel, R. N., Bose, H. R., Mandy, W. J. and Hoare, D. S. 1972. Physiological studies of methane-and methanol-utilizing bacteria: comparison of alcohol dehydrogenase from Methylococcus capsulatus and Pseudomonas sp. M 27. — J. Bacteriol. 110: 570–577.Google Scholar
  21. Patel, R. N. and Felix, A. 1976. Microbial oxidation of methane and methanol: crystallization and properties of methanol dehydrogenase from Methylosinus trichosporium. — J. Bacteriol. 128: 413–424.Google Scholar
  22. Patel, R. N. and Hoare, D. S. 1971. Physiological studies of methane and methanol utilizing bacteria. Oxidation of C-1 compounds by Methylococcus capsulatus. — J. Bacteriol. 107: 187–192.Google Scholar
  23. Patel, R. N., Hoare, S. L., Hoare, D. S. and Taylor, B. F. 1977. [1-14C]Acetate assimilation by a type I obligate methylotroph, Methylococcus capsulatus. — Appl. Environ. Microbiol. 34: 609–610.Google Scholar
  24. Patel, R. N., Hoare, S. L., Hoare, D. S. and Taylor, B. F. 1975. Incomplete tricarboxylic acid cycle in a type I methylotroph, Methylococcus capsulatus. — J. Bacteriol. 123: 382–384.Google Scholar
  25. Patel, R. N., Hoare, D. S. and Taylor, B. F. 1969. Biochemical basis of obligate autotrophy in Methylococcus capsulatus (Texas). — Bacteriol. Proc., p. 128.Google Scholar
  26. Patel, R. N., Hou, C. T. and Felix, A. 1978. Microbial oxidation of methane and methanol: crystallization of methanol dehydrogenase and properties of holo-and apomethanol dehydrogenase from Methylomonas methanica. — J. Bacteriol. 133: 641–649.Google Scholar
  27. Patt, T. E., Cole, G. C., Bland, J. and Hanson, R. S. 1974. Isolation and characterization of bacteria that grow on methane and organic compounds as sole sources of carbon and energy. — J. Bacteriol. 120: 955–964.Google Scholar
  28. Quayle, J. R. 1972. The metabolism of C-1 compounds by microorganisms. — Adv. Microbial Physiol. 9: 119–203.Google Scholar
  29. Ribbons, D. W., Harrison, J. E. and Wadzinski, A. M. 1970. Metabolism of single carbon compounds. — Annu. Rev. Microbiol. 24: 135–158.Google Scholar
  30. Smith, A. J. and Hoare, D. S. 1968. Acetate assimilation by Nitrobacter agilis in relation to its “obligate autotrophy”. — J. Bacteriol. 95: 844–855.Google Scholar
  31. Smith, A. J., London, J. and Stanier, R. Y. 1967. Biochemical basis of obligate autotrophy in bluegreen algae and thiobacilli. — J. Bacteriol. 94: 972–983.Google Scholar
  32. Sperl, G. T., Forrest, H. S. and Gibson, D. T. 1974. Substrate specificity of the purified primary alcohol dehydrogenase from methanol-utilizing bacteria. — J. Bacteriol. 118: 541–550.Google Scholar
  33. Taylor, B. F. and Hoare, D. S. 1972. Thiobacillus denitrificans as an obligate chemolithotroph. Cell suspension and enzymatic studies. — Arch. Microbiol. 80: 262–276.Google Scholar
  34. Taylor, I. J. and Anthony, C. 1976. A biochemical basis for obligate methylotrophy: properties of a mutant of Pseudomonas AM 1 lacking α-ketoglutarate dehydrogenase. — J. Gen. Microbiol. 93: 259–265.Google Scholar
  35. Urushibara, T., Forrest, H. S., Hoare, D. S. and Patel, R. N. 1971. Pteridine produced by Methylococcus capsulatus. Isolation and identification of a neopterine 2′:3′-phosphate. — Biochem. J. 125: 141–146.Google Scholar
  36. Wadzinki, A. M. and Ribbons, D. W. 1975. Utilization of acetate by Methanomonas methanooxidans. — J. Bacteriol. 123: 380–381.Google Scholar
  37. Whittenbury, R., Phillip, K. C. and Wilkinson, J. F. 1970. Enrichment isolation and some properties of methane-utilizing bacteria. — J. Gen. Microbiol. 61: 205–218.Google Scholar
  38. Whittenbury, R., Dalton, H., Eccleston, M. and Reed, H. L. 1974. The different types of methane oxidizing bacteria and some of their more unusual properties. In: Proc. of the International Symposium on Microbial Growth on C-1 Compounds. Tokyo, Japan. p. 1–9.Google Scholar

Copyright information

© H. Veenman & Zonen B. V. 1979

Authors and Affiliations

  • R. N. Patel
    • 1
  • S. Louise Hoare
    • 1
  • D. S. Hoare
    • 1
  1. 1.Department of MicrobiologyUniversity of TexasAustinUSA

Personalised recommendations