Skip to main content
Log in

Evaluation of the efficiency of extraction for the quantitative estimation of hydrogen bacteria in soil

  • Laboratory Methods
  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The efficiency of extraction of hydrogen bacteria from soil for plate counting was evaluated by using pure cultures adsorbed to sterilized soil. The utilization of model materials which interact with bacteria by adhesive, capillary or electrostatic forces and the use of extraction fluids with buffering, detergent or chelating activity demonstrated the major importance of capillary forces for the retention of hydrogen bacteria.

Utilization of Tris buffer (pH 7.5) as extraction fluid and separation of extracted bacteria from soil particles by sedimentation for 15 min resulted in the highest recovery. A second extraction step including sonication did not increase the efficiency. The extraction efficiency of 8 different strains of hydrogen bacteria adsorbed to 3 different soils demonstrated a high degree of variation with respect to bacterial strains, but not to soil types. The recovery was inversely related to cell parameters such as size, motility and slime formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aragno, M., Walther-Mauruschat, A., Mayer, F. and Schlegel, H. G. 1977. Micromorphology of gram-negative hydrogen bacteria. I. Cell morphology and flagellation. — Arch. Microbiol. 114: 93–100.

    Google Scholar 

  • Auling, G., Reh, M., Lee, C. M. and Schlegel, H. G. 1978. Pseudomonas pseudoflava, a new species of hydrogen-oxidizing bacteria: Its differentiation from Pseudomonas flava and other yellow-pigmented, gram-negative, hydrogen-oxidizing species. — Int. J. Syst. Bacteriol. 28: 82–95.

    Google Scholar 

  • Balkwill, D. L., Rucinsky, T. E. and Casida, L. E. 1977. Release of microorganisms from soil with respect to transmission electron microscopy viewing and plate counts. — Antonie van Leeuwenhoek 43: 73–87.

    Google Scholar 

  • Biebl, H. und Drews, G. 1969. Das in-vivo-Spektrum als taxonomisches Merkmal bei Untersuchungen zur Verbreitung von Athiorhodaceen. — Zentbl. Bakteriol. Parasitkde. Infektionskr. Hyg. Abt. 2. 123: 425–452.

    Google Scholar 

  • Faegri, A., Torsvik, V. L. and Goksöyr, J. 1977. Bacterial and fungal activities in soil: Separation of bacteria and fungi by a rapid fractionated centrifuge technique. — Soil Biol. Biochem. 9: 105–112.

    Google Scholar 

  • Hattori, T. 1973. (ed.). In Microbial life in the soil. An introduction. Marcel Dekker Inc., New York.

    Google Scholar 

  • Hattori, T. and Hattori, R. 1976. The physical environment in soil microbiology: An attempt to extend principles of microbiology to soil microorganisms. — Crit. Rev. Microbiol. 4: 423–461.

    Google Scholar 

  • Marshall, K. C. 1971. Sorptive interactions between soil particles and microorganisms. p. 409–442. In A. D. McLaren and J. Skujins, (eds), Soil Biochemistry II. — Marcel Dekker Inc., New York.

    Google Scholar 

  • Marshall, K. C. 1975. Clay minerology in relation to survival of soil bacteria. — Annu. Rev. Phytopathol. 13: 357–373.

    Google Scholar 

  • Marshall, K. C. and Cruickshank, R. H. 1973. Cell surface hydrophobicity and the orientation of certain bacteria at interfaces. — Arch. Mikrobiol. 91: 29–40.

    Google Scholar 

  • Müller, G. und Hickisch, B. 1970. Die Adsorption von Bodenbakterien an Substrate mit besonderer Berücksichtigung sekundärer Tonminerale und Ionenaustauscher auf Kunstharzbasis. — Zentbl. Bakteriol. Parasitkde. Infektionskr. Hyg. Abt. 2. 125: 333–362.

    Google Scholar 

  • Nováková, J. 1977. Effects of clays on the microbe adsorption. — Zentbl. Bakteriol. Parasitkde. Infektionskr. Hyg. Abt. 2. 132: 418–422.

    Google Scholar 

  • Schlegel, H. G., Kaltwasser, H. und Gottschalk, G. 1961. Ein Submersverfahren zur Kultur wasserstoffoxidierender Bakterien: Wachstumsphysiologische Untersuchungen. — Arch. Mikrobiol. 38: 209–222.

    Google Scholar 

  • Stotzky, G. 1966. Influence of clay minerals on microorganisms. II. Effect of various clay species, homoionic clays, and other particles on bacteria. — Can. J. Microbiol. 12: 831–848.

    Google Scholar 

  • Stotzky, G. 1972. Activity, ecology, and population dynamics of microorganisms in soil. — Crit. Rev. Microbiol. 2: 59–137.

    Google Scholar 

  • Wiegel, J., Wilke, D., Baumgarten, J., Opitz, R. and Schlegel, H. G. 1978. Transfer of the nitrogen fixing hydrogen bacterium Corynebacterium autotrophicum (Baumgarten et al.) to Xanthobacter gen. nov. — Int. J. Syst. Bacteriol. 28: 573–581.

    Google Scholar 

  • Zvyagintsev, D. G. 1966. Influence of soil dispersion and desorption of microorganisms on their quantitative estimate by the plate-culture method. — Soviet Soil Science (Translation from Pochvovedenie) 7: 811–818.

    Google Scholar 

  • Zvyagintsev, D. G. 1973. (ed.). In Interaction between microorganisms and solid surfaces. —Moscow University Press, Moscow.

    Google Scholar 

  • Zvyagintsev, D. G., Dimitriyev, Y. A. and Galkina, G. M. 1966. Influence of the method of preparing soil for microbiological analysis on the quantitative count of bacteria in soils of various groups. — Mikrobiologiya 35: 328–336.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niepold, F., Conrad, R. & Schlegel, H.G. Evaluation of the efficiency of extraction for the quantitative estimation of hydrogen bacteria in soil. Antonie van Leeuwenhoek 45, 485–497 (1979). https://doi.org/10.1007/BF00443286

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00443286

Keywords

Navigation