Antonie van Leeuwenhoek

, Volume 45, Issue 3, pp 437–450 | Cite as

Production, purification and properties of a Pichia kluyveri killer toxin

  • E. J. Middelbeek
  • J. M. H. Hermans
  • C. Stumm
Physiology and Growth


Production of the killer toxin of Pichia kluyveri 1002 was stimulated in the presence of yeast extract. In a minimal medium production was optimal at pH 3.8–4.0 and 22–25°C. Addition of gelatin and nonionic detergents, like Brij-58 (polyoxyethylene 20 cetyl ether) and Triton-X-100, to this medium enhanced production significantly.

The killer toxin was purified 140-fold by use of a stepwise ethanol precipitation and butyl Sepharose column chromatography. The purified killer toxin, which still contained some carbohydrates, appeared to be glycoprotein with a mol wt of about 19000 and an isoelectric point of 4.3. It was stable between pH 2.5 and 4.7 and up to 40°C.


Yeast Extract Column Chromatography Gelatin Butyl Minimal Medium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Al-Aidroos, K. and Bussey, H. 1978. Chromosomal mutants of Saccharomyces cerevisiae affecting the cell wall binding site for killer factor. — Can. J. Microbiol. 24: 228–237.Google Scholar
  2. Bevan, E. A. and Somers, J. M. 1969. Somatic segregation of the killer (k) and neutral (n) cytoplasmic genetic determinants in yeast. — Genet. Res. 14; 71–77.Google Scholar
  3. Bevan, E. A., Herring, A. J. and Mitchell, D. J. 1973. Preliminary characterization of two species of dsRNA in yeast and their relationship to the killer character. — Nature 245: 81–86.Google Scholar
  4. Bussey, H. 1972. Effects of yeast killer factor on sensitive cells. — Nature New Biology 235: 73–75.Google Scholar
  5. Bussey, H. and Skipper, N. 1975. Membrane-mediated killing of Saccharomyces cerevisiae by glycoproteins from Torulopsis glabrata, — J. Bacteriol. 124: 476–483.Google Scholar
  6. Davis, B. J. 1964. Disc electrophoresis. II. Method and application to human serum proteins. —Ann. N.Y. Acad. Sci. 121: 404–427.Google Scholar
  7. Er-el, Z., Zaidenzaig, Y. and Shaltiel, S. 1972. Hydrocarbon-coated Sepharoses. Use in the purification of glycogen phosphorylase. — Biochem. Biophys. Res. Commun. 49: 383–390.Google Scholar
  8. Fink, G. R. and Styles, C. A. 1972. Curing of a killer factor in Saccharomyces cerevisiae. — Proc. Natl. Acad. Sci. USA 69: 2846–2849.Google Scholar
  9. Grefrath, S. P. and Reynolds, J. A. 1974. The molecular weight of the major glycoprotein from the human erythrocyte membrane. — Proc. Natl. Acad. Sci. USA 71: 3913–3916.Google Scholar
  10. Herring, A. J. and Bevan, E. A. 1974. Virus-like particles associated with the double-stranded RNA species found in killer and sensitive strains of the yeast Saccharomyces cerevisiae. — J. Gen. Virol. 22: 387–394.Google Scholar
  11. Hjertén, S. 1973. Some general aspects of hydrophobic interaction chromatography. — J. Chromatogr. 87: 325–331.Google Scholar
  12. Hofstee, B. H. J. 1973. Immobilization of enzymes through non-covalent binding to substituted agaroses. — Biochem. Biophys. Res. Commun. 53: 1137–1144.Google Scholar
  13. Imamura, T., Kawamoto, M. and Takaoka, Y. 1974. Characteristics of main mash infected by killer yeast in saké brewing and the nature of its killer factor. — J. Ferment. Technol. 52: 293–299.Google Scholar
  14. Jetten, A. M., Vogels, G. D. and de Windt, F. 1972. Production and purification of a Staphylococcus epidermidis bacteriocin. — J. Bacteriol. 112: 235–242.Google Scholar
  15. Kotani, H., Shinmyo, A. and Enatsu, T. 1977. Killer toxin for sake yeast: Properties and effects of adenosine-5′-di-phosphate and calcium ion on killing action. — J. Bacteriol. 129: 640–650.Google Scholar
  16. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. — Nature 227: 680–685.Google Scholar
  17. Lowry, O., Rosebrough, N. Farr, A. and Randall, R. 1951. Protein measurement with the Folin phenol reagent. — J. Biol. Chem. 193: 265–275.Google Scholar
  18. Maule, A. P. and Thomas, P. D. 1973. Strains of yeast lethal to brewery yeast. — J. Inst. Brew. 79: 137–141.Google Scholar
  19. Ouchi, K., Kawase, N., Nakano, S. and Akiyama, H. 1978. Stabilization of yeast killer factor by glycerol. — Agric. Biol. Chem. 42: 1–5.Google Scholar
  20. Phaff, H. J. 1971. Structure and biosynthesis of the yeast cell envelope, p. 135–210. In A. H. Rose and J. S. Harrison, (eds), The Yeasts, Vol. II. — Academic Press, London and New York.Google Scholar
  21. Philliskirk, G. and Young, T. W. 1975. The occurrence of killer character in yeasts of various genera. — Antonie van Leeuwenhoek 41: 147–151.Google Scholar
  22. Pietras, D. F. and Bruenn, J. A. 1976. The molecular biology of yeast killer factor. — Int. J. Biochem. 7: 173–179.Google Scholar
  23. Putman, E. W. 1957. Paper chromatography of sugars, p. 62–73. In S. P. Colowick and N. O. Kaplan, (eds), Methods in Enzymology, Vol. III. — Academic Press, New York.Google Scholar
  24. Reisner, A. H., Nemes, P. and Bucholtz, C. 1975. The use of Coomassie Brilliant Blue G250 perchloric acid solution for staining in electrophoresis and isoelectric focusing on polyacrylamide gels. — Anal. Biochem. 64: 509–516.Google Scholar
  25. Somers, J. M. and Bevan, E. A. 1969. The inheritance of the killer character in yeast. — Genet. Res. 13: 71–83.Google Scholar
  26. Stumm, C., Hermans, J. M. H., Middelbeek, E. J., Croes, A. F. and de Vries, G. J. M. L. 1977. Killer-sensitive relationships in yeasts from natural habitats. — Antonie van Leeuwenhoek 43: 125–128.Google Scholar
  27. Vodkin, M. H. and Fink, G. R. 1973. A nucleic acid associated with a killer strain of yeast. — Proc. Natl. Acad. Sci. USA 70: 1069–1072.Google Scholar
  28. Wickner, R. B. 1974. Chromosomal and nonchromosomal mutations affecting the killer character of Saccharomyces cerevisiae. — Genetics 76: 423–432.Google Scholar
  29. Wickner, R. B. 1976. Killer of Saccharomyces cerevisiae: a double-stranded ribonucleic acid plasmid. — Bacteriol. Rev. 40: 757–773.Google Scholar
  30. Woods, D. R. and Bevan, E. A. 1968. Studies on the nature of the killer factor produced by Saccharomyces cerevisiae. — J. Gen. Microbiol. 51: 115–126.Google Scholar
  31. Woods, D. R., Ross, I. W. and Hendry, D. A. 1974. A new killer factor produced by a killer-sensitive yeast strain. — J. Gen. Microbiol. 81: 285–289.Google Scholar
  32. Young, T. W. and Philliskirk, G. 1977. The production of a yeast killer factor in the chemostat and the effects of killer yeasts in mixed continuous culture with a sensitive strain. — J. Appl. Bacteriol. 43: 425–436.Google Scholar
  33. Young, T. W. and Yagiu, M. 1978. A comparison of the killer character in different yeasts and its classification. — Antonie van Leeuwenhoek 44: 59–77.Google Scholar
  34. Zacharius, R. M., Zell, T. E., Morrison, J. H. and Woodlock, J. J. 1969. Glycoprotein staining following electrophoresis on acrylamide gels. — Anal. Biochem. 30: 148–152.Google Scholar

Copyright information

© H. Veenman & Zonen B. V. 1979

Authors and Affiliations

  • E. J. Middelbeek
    • 1
  • J. M. H. Hermans
    • 1
  • C. Stumm
    • 1
  1. 1.Department of Microbiology, Faculty of ScienceUniversity of NijmegenNijmegenThe Netherlands

Personalised recommendations