Advertisement

Antonie van Leeuwenhoek

, Volume 45, Issue 3, pp 369–390 | Cite as

The ultrastructure of Spirulina platensis in relation to temperature and light intensity

  • C. van Eykelenburg
Development and Structure

Abstract

The ultrastructure of Spirulina platensis, a cyanobacterium with a helical morphology, has been studied in relation to temperature and light intensity. An increase in temperature gives rise to a more tightly coiled trichome, an increase in sheath material formation and a decrease in cyanophycin (above 17°C) and polyglucan (above 20°C) granule concentration. An increase in light intensity leads to an increase in gas vesicle concentration while the phycobilisome content decreases. Furthermore, cylindrical bodies have been observed with a somewhat different ultrastructure from those found in other species of cyanobacteria. The occurrence, size and ultrastructure of polyhedral bodies, photosynthetic lamellae, mesosomes, lipid deposits and an unknown kidney-shaped inclusion in relation to temperature and light intensity are described.

Keywords

Lipid Light Intensity Spirulina Material Formation Lipid Deposit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allen, M. M. 1968. Photosynthetic membrane system in Anacystis nidulans. — J. Bacteriol. 96: 836–841.Google Scholar
  2. Allen, M. M. 1972. Mesosomes in blue-green algae. — Arch. Mikrobiol. 84: 199–206.Google Scholar
  3. Amelunxen, R. E. and Murdock, A. L. 1978. Mechanisms of thermophily. — Crit. Rev. Microbiol. 6: 343–393.Google Scholar
  4. Braun, V. and Rehn, K. 1969. Chemical characterization, spatial distribution and function of a lipoprotein (murein-lipoprotein) of the E. coli cell wall. — Eur. J. Biochem. 10: 426–438.Google Scholar
  5. Brown, D. L. and Bisalputra, T. 1969. Fine sturcture of the blue-green alga Nostoc sphaericum: the structured granule. — Phycologia 8: 119–126.Google Scholar
  6. Busson, F. 1971. (ed.), Spirulina platensis (Gom.) Geitler et Spirulina geitleri J. de Toni: Cyanophycées alimentaires. — Service de Santé, Marseille.Google Scholar
  7. Butler, R. D. and Allsopp, A. 1972. Ultrastructural investigations in the Stigonemataceae (Cyanophyta). — Arch. Mikrobiol. 82: 283–299.Google Scholar
  8. Carr, N. G. and Whitton, B. A. 1973. The biology of blue-green algae. — Blackwell, Oxford.Google Scholar
  9. Chang, H. Y. Y. and Allen, M. M. 1974. The isolation of rhapidosomes from the blue-green alga, Spirulina. — J. Gen. Microbiol. 18: 121–130.Google Scholar
  10. Codd, G. A. and Stewart, W. D. P. 1976. Polyhedral bodies and ribulose 1,5-diphosphate carboxylase of the blue-green alga Anabaena cylindrica. — Planta 130: 323–326.Google Scholar
  11. Edwards, M. R. and Gantt, E. 1971. Phycobilisomes of the thermophilic blue-green alga Synechococcus lividus. — J. Cell. Biol. 50: 896–900.Google Scholar
  12. Elbein, A. D. and Mitchell, M. 1973. Levels of glycogen and trehalose in Mycobacterium smegmatis and the purification and properties of the glycogen synthethase. — J. Bacteriol. 113: 863–873.Google Scholar
  13. Fitz-James, P. C. 1960. Participation of the cytoplasmic membrance in the growth and spore formation of bacilli. — J. Biophys. Biochem. Cytol. 6: 507–528.Google Scholar
  14. Fogg, G. E., Stewart, W. D. P., Fay, P. and Walsby, A. E. 1973. The blue-green algae. — Academic Press, London.Google Scholar
  15. Fuhs, G. W. 1973. Cytochemical examination of blue-green algae. p. 117–143. InN.G. Carr and B. A. Whitton (eds), The biology of the blue-green algae. — Blackwell, Oxford.Google Scholar
  16. Gantt, E. and Conti, S. F. 1966. Granules associated with the chloroplast lamellae of Porphyridium cruentum. — J. Cell Biol. 29: 423–434.Google Scholar
  17. Gantt, E. and Lipschultz, C. A. 1977. Probing phycobilisome structure by immuno-electron microscopy. — J. Phycol. 13: 185–192.Google Scholar
  18. Gibbons, N. E. and Murray, R. G. E. 1978. Proposals concerning the higher taxa of bacteria. — Int. J. Syst. Bacteriol. 28: 1–6.Google Scholar
  19. Giesy, R. M. 1964. A light and electron microscope study of interlanmellar polyglucoside bodies in Oscillatoria chalybia, — Am. J. Bot. 51: 388–396.Google Scholar
  20. Halfen, L. N. and Castenholz, R. W. 1971. Gliding motility in the blue-green alga Oscillatoria princeps. — J. Phycol. 7: 133–145.Google Scholar
  21. Holmgren, P. R., Hostetter, H. P. and Scholes, V. E. 1971. Ultrastructural observations of cross walls in the blue-green alga Spirulina maior. — J. Phycol. 7: 309–311.Google Scholar
  22. Jost, M. 1965. Die Ultrastruktur von Oscillatoria rubescens D.C. — Arch. Mikrobiol. 50: 211–245.Google Scholar
  23. Lamont, H. C. 1969a. Sacrificial cell death and trichome breakage in an Oscillatoriacean blue-green alga: the role of murein. — Arch. Mikrobiol. 69: 237–259.Google Scholar
  24. Lamont, H. C. 1969b. Shear-oriented microfibrils in the mucilaginous investments of two motile Oscillatoriacean blue-green algae. — J. Bacteriol. 97: 350–361.Google Scholar
  25. Lang, N. J. 1977. Starria zimbabweensis (Cyanophyceae) gen. nov. et sp. nov.: A filament triradiate in transverse section. — J. Phycol. 13: 288–296.Google Scholar
  26. Lang, N. J., Simon, R. O. and Wolk, C. P. 1972. Correspondence of cyanophycin granules with structured granules in Anabaena cylindrica. — Arch. Mikrobiol. 83: 313–320.Google Scholar
  27. Leak, L. V. 1967. Studies on the preservation and organization of DNA-containing regions in a bluegreen alga: a cytochemical and ultrastructural study. — J. Ultrastruct. Res. 20: 190–205.Google Scholar
  28. Lehman, M. and Wöber, G. 1978. Enzymes of glycogen mobilization in the photosynthetic procaryote, Anacystis nidulans. — Planta 143: 63–65.Google Scholar
  29. Orpin, C. G. 1973. The intracellular polysaccharide of the rumen bacterium Eadie's Oval. — Arch. Mikrobiol. 90: 247–254.Google Scholar
  30. Pankratz, H. S. and Bowen, C. C. 1963. Cytology of blue-green algae. I. The cells of Symploca muscorum. — Am. J. Bot. 50: 387–399.Google Scholar
  31. Parks, I. C., Daneo-Moore, L. and Higgins, M. L. 1978. Reduction in the number of mesosomes in Streptococcus faecalis by X-irradiation. — Abstracts of the XII Int. Congr. on Microbiol. (sept. 3–8) München.Google Scholar
  32. Priess, J. 1969. The regulation of the biosynthesis of α-1,4-glucans in bacteria and plants. p. 125–160. In B. L. Horecker and E. R. Stadtman (eds), Current topics in cellular regulation. — Acad. Press, New York.Google Scholar
  33. Pritchard, R., Beauclerk, A. and Smith, A. J. 1975. Glucose dehydrogenase of Chlorogloeopsis fritschii. — Biochem. Soc. Trans. 3: 342–344.Google Scholar
  34. Ris, H. and Singh, R. N. 1961. Electron microscope studies on blue-green algae. — J. Biophys. Biochem. Cytol. 9: 63–80.Google Scholar
  35. Salton, M. R. J. 1978. Structure and function of bacterial plasma membranes. p. 201–223. In R. Y. Stanier, H. J. Rogers and J. B. Ward (eds), Relations between structure and function of the prokaryotic cell. — University Press, Cambridge.Google Scholar
  36. Salton, M. R. J. and Owen, P. 1976. Bacterial membrane structure. — Annu. Rev. Microbiol. 30: 451–482.Google Scholar
  37. Schussnig, B. (ed). 1953. Handbuch der Protophytenkunde, Vol. I. — G. Fischer, Jena.Google Scholar
  38. Shively, J. M. 1974. Inclusion bodies of prokaryotes. — Annu. Rev. Microbiol. 28: 167–187.Google Scholar
  39. Simon, R. D. 1971. Cyanophycin granules from the blue-green alga Anabaena cylindrica: A reserve material consisting of copolymers of aspartic acid and arginine. — Proc. Nat. Acad. Sci. U.S.A. 68: 265–267.Google Scholar
  40. Simon, R. D. 1973. The effect of chloramphenicol on the production of cyanophycin granule polypeptide in the blue-green alga Anabaena cylindrica. — Arch. Mikrobiol. 92: 115–122.Google Scholar
  41. Stanier, R. Y. 1975. The utilization of organic substrates by cyanobacteria. — Biochem. Soc. Trans. 3: 352–357.Google Scholar
  42. Stanier, R. Y. and Cohen-Bazire, G. 1977. Phototrophic prokaryotes: The cyanobacteria. — Annu. Rev. Microbiol. 31: 225–274.Google Scholar
  43. Titu, H., Paraschiv, M. and Salageanu, V. 1977. Contributions to the ultrastructural study of the blue-green alga Spirulina platensis (Nordst.) Geitl. — kev. Roum. Biol. 22: 85–89.Google Scholar
  44. Tuffery, A. A. 1969. Light and electron microscopy of the sheath of a blue-green alga. — J. Gen. Microbiol. 57: 41–50.Google Scholar
  45. Van Baalen, C. and Brown, R. M. 1969. The ultrastructure of the marine blue-green alga, Trichodesmium erythraeum, with special reference to the cell wall, gas vacuoles, and cylindrical bodies. — Arch. Mikrobiol. 69: 79–91.Google Scholar
  46. Van Eykelenburg, C. 1977. On the morphology and ultrastructure of the cell wall of Spirulina platensis. — Antonie van Leeuwenhoek 43: 89–99.Google Scholar
  47. Van Eykelenburg, C. 1978. A glucan from the cell wall of the cyanobacterium Spirulina platensis. —Antonie van Leeuwenhoek 44: 321–327.Google Scholar
  48. Van Eykelenburg, C. 1979. An “ecobox” with a discontinuous temperature gradient and a continuous light intensity gradient. — Experientia 35: 1127–1128.Google Scholar
  49. Van Eykelenburg, C., Fuchs, A. and Schmidt, G. H. 1979. Some theoretical considerations on the in vitro shape of the cross walls in Spirulina spp. — J. Theor. Biol., in press.Google Scholar
  50. Walsby, A. E. 1978. The gas vesicles of aquatic prokaryote. p. 327–358. In R. Y. Stanier, H. J. Rogers and J. B. Ward (eds), Relations between structure and function in the prokaryotic cell. — University Press, Cambridge.Google Scholar
  51. Wildman, R. B. and Bowen, C. C. 1974. Phycobilisomes in blue-green algae. — J. Bacteriol. 117: 866–881.Google Scholar
  52. Wolk, C. P. 1973. Physiology and cytological chemistry of blue-green algae. — Baceriol. Rev. 37: 32–101.Google Scholar
  53. Zarrouk, C. 1966. Contribution à l'étude d'une cyanophycée. Influence de divers facteurs physiques et chimiques sur la croissance et la photosynthèse de Spirulina maxima (Setch et Gardner) Geitler. — Thesis, University of Paris.Google Scholar

Copyright information

© H. Veenman & Zonen B. V. 1979

Authors and Affiliations

  • C. van Eykelenburg
    • 1
  1. 1.Laboratory of MicrobiologyDelft University of TechnologyDelftThe Netherlands

Personalised recommendations