Advertisement

European Journal of Pediatrics

, Volume 141, Issue 3, pp 134–142 | Cite as

Oncogenes: Clues to carcinogenesis

  • C. R. Bartram
Reviews

Abstract

Recent applications of recombinant DNA techniques in cancer research led to the detection of cellular genes with potential transforming activity, called oncogenes (c-onc). Regularly they seem to be involved in normal cell differentiation and proliferation: a number of oncogene-encoded proteins specifically phosphorylates tyrosine, a key reaction in growth control. Certain human tumors exhibit activated forms of these genes and DNA fragments isolated from these neoplasms transform nonneoplastic cells (transfection assay). Oncogenes were first discovered and defined in a number of retroviruses; these viral oncogenes (v-onc) are thought to have been derived from the cellular oncogenes (c-onc). By integration of the v-onc genes into the host genome acute neoplastic transformation of the cell may occur. Several modes of oncogene activation are discussed that lead either to an increased dosage of gene product or to the formation of an altered gene product. The localization of oncogenes in the human genome near the breakpoints of specific chromosome aberrations involved in various neoplasms like Burkitt lymphoma and several leukemias emphasizes the importance of these genes in carcinogenesis.

Key words

Oncogene Recombinant DNA techniques Carcinogenesis Retrovirus Chromosomal aberrations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adams JM, Gerondakis S, Webb E, Carcoran LM, Cory S (1983) Cellular myc oncogene is altered by chromosome translocation to an immunoglobulin locus in murine plasmocytomas and is rearranged similarly in human Burkitt lymphomas. Proc Natl Acad Sci USA 80:1982–1986Google Scholar
  2. 2.
    Alitalo K, Schwab M, Lin CC, Varmus HE, Bishop JM (1983) Homogeneously staining chromosomal regions contain amplified copies of abundantly expressed cellular oncogene (c-myc) in malignant neuroendocrine cells from a human colon carcinoma. Proc Natl Acad Sci USA 80:1707–1711Google Scholar
  3. 3.
    Antonarakis SE, Phillips III JA, Kazazian HH (1982) Genetic diseases: diagnosis by restriction endonuclease analysis. J Pediatr 100:845–856Google Scholar
  4. 4.
    Bartram CR, Rüdiger HW (1978) Chromosomenanomalien bei malignen Tumoren. Klin Wochenschr 56:733–741Google Scholar
  5. 5.
    Bartram CR, de Klein A, Hagemeijer A, van Agthoven T, Geurts van Kessel A, Bootsma D, Grosveld G, Ferguson-Smith MA, Davies T, Stone M, Heisterkamp N, Stephenson JR, Groffen J (1983) Translocation of the human c-abl oncogene occurs in variant Ph1-positive but not Ph1-negative chronic myelocytic leukaemia. Nature 306:277–280Google Scholar
  6. 6.
    Bartram CR, de Klein A, Hagemeijer A, Grosveld G, Heisterkamp N, Groffen J (1984) Localization of the human c-sis oncogene in Ph1-positive and Ph1-negative chronic myelocytic leukemia. Blood (in press)Google Scholar
  7. 7.
    Berger R (1981) The chromosomes in hematology. Cancer Genet Cytogenet 4:69–88Google Scholar
  8. 8.
    Bishop JM (1981) Enemies within: the genesis of retrovirus oncogenes. Cell 23:5–6Google Scholar
  9. 9.
    Bister K, Duesberg PH (1983) Genetic structure and transforming genes of avian retroviruses. In: Klein G (ed) Advances in viral oncology, vol 1. Raven Press, New York, pp 3–42Google Scholar
  10. 10.
    Bloomfield CD, Arthur DC (1982) Evaluation of leukemic cell chromosomes as a guide to therapy. Blood Cells 8:501–518Google Scholar
  11. 11.
    Boveri T (1914) Zur Entstehung maligner Tumoren. Gustav Fischer, JenaGoogle Scholar
  12. 12.
    Buhrow SA, Cohen S, Staros JV (1982) Affinity labeling of the protein kinase associated with the epidermal growth factor receptor in membrane vesicles from A431 cells. J Biol Chem 257:4019–4022Google Scholar
  13. 12a.
    Bunn PA, Schechter GP, Jaffe E, Blayney D, Young RC, Matthews MJ, Blattner W, Broder S, Robert-Guroff M, Gallo RC (1983) Clinical course of retrovirus associated adult T-cell lymphoma in the United States. N Engl J Med 309:257–264Google Scholar
  14. 13.
    Cairns J (1981) The origin of human cancers. Nature 289: 353–357Google Scholar
  15. 14.
    Chang EH, Furth ME, Scolnick EM, Lowry DR (1982) Tumorigenic transformation of mammalian cells induced by a normal human gene homologous to the oncogene of Harvey murine sarcoma virus. Nature 297:479–483Google Scholar
  16. 15.
    Coffin JM, Varmus HE, Bishop JM, Essex M, Hardy WD, Martin GS, Rosenberg NE, Scolnick EM, Weinberg RA, Vogt PK (1981) Proposal for naming host cell-derived insets in retrovirus genomes. J Virol 40:953–957Google Scholar
  17. 16.
    Cohen P (1982) The role of protein phosphorylation in neural and hormonal control of cellular activity. Nature 296:613–620Google Scholar
  18. 17.
    Cooper GM (1982) Cellular transforming genes. Science 218: 801–806Google Scholar
  19. 18.
    Cooper GM, Ollenquist S, Silverman L (1980) Transforming activity of DNA of chemically transformed and normal cells. Nature 284:418–421Google Scholar
  20. 19.
    Cotton PC, Brugge JS (1983) Neural tissues express high levels of the cellular scr gene product pp60c-src. Mol Cell Biol 3: 1157–1162Google Scholar
  21. 20.
    Croce CM, Shander M, Martinis J, Cicurel L, D'Ancona GJ, Dolby TW, Koprowski H (1979) Chromosomal location of the genes for human immunoglobulin heavy chains. Proc Natl Acad Sci USA 76:3416–3419Google Scholar
  22. 21.
    Dalla-Favera R, Franchini G, Marinotti S, Wong-Staal F, Gallo RC, Croce CM (1982) Chromosomal assignment of the human homologues of feline sarcoma virus and avian myeloblastosis virus onc genes. Proc Natl Acad Sci USA 79:4714–4717Google Scholar
  23. 22.
    Dalla-Favera R, Gallo RC, Giallongo A, Croce CM (1982) Chromosomal localization of the human homolog (c-sis) of the simian sarcoma virus onc gene. Science 218:686–688Google Scholar
  24. 23.
    Dalla-Favera R, Bregni M, Erikson J, Patterson D, Gallo RC, Croce CM (1982) Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc Natl Acad Sci USA 79:7824–7827Google Scholar
  25. 24.
    Dalla-Favera R, Wong-Staal F, Gallo R (1982) onc gene amplification in promyelocytic leukaemia cell line HL-60 and primary leukaemic cells of the same patient. Nature 299:61–63Google Scholar
  26. 25.
    Dalla-Eavera R, Martinotti S, Gallo RC, Erikson J, Croce CM (1983) Translocation and rearrangements of the c-myc oncogene locus in human undifferentiated B-cell lymphomas. Science 219:963–967Google Scholar
  27. 26.
    Davies KE (1981) The application of DNA recombinant technology to the analysis of the human genome and genetic diseases. Hum Genet 58:351–357Google Scholar
  28. 27.
    De la Chapelle A, Lenoir G, Boué J, Boué A, Gallano P, Huerre C, Szajnert MF, Jeanpiere M, Lalone JM, Kaplan JC (1983) Lambda Ig constant region genes are translocated to chromosome 8 in Burkitt's lymphoma with t(8;22). Nucleic Acids Res 11:1133–1142Google Scholar
  29. 28.
    Der CJ, Krontiris TG, Cooper GM (1982) Transforming genes of human bladder and lung carcinoma cell lines are homologous to the ras genes of Harvey and Kirsten sarcoma viruses. Proc Natl Acad Sci USA 79:3637–3640Google Scholar
  30. 29.
    Doolittle RF, Hunkapillar MW, Hood LE, Devere SG, Robbins KC, Aaronson SA, Antoniades HN (1983) Simian sarcoma virus onc gene, v-sis, is derived from the gene (or genes) encoding a platelet-derived growth factor. Science 221:275–277Google Scholar
  31. 30.
    Duesberg PH, Vogt PK (1970) Differences between the ribonucleic acids of transforming and nontransforming avian tumor viruses. Proc Natl Acad Sci USA 67:1673–1680Google Scholar
  32. 30a.
    Duesberg PH (1983) Retroviral transforming genes in normal cells? Nature 304:219–226Google Scholar
  33. 30b.
    Ellermann V, Bang O (1908) Experimentelle Leukämie bei Hühnern. Zentralbl Bakteriol, Abt 1, 46:595–604Google Scholar
  34. 31.
    Erikson J, Martinis J, Croce CM (1981) Assignment of the genes for human λ immunoglobulin chains to chromosome 22. Nature 294:173–175Google Scholar
  35. 32.
    Erikson J, Finaen J, Novell PC, Croce CM (1982) Translocation of immunoglobulin VH genes in Burkitt lymphoma. Proc Natl Acad Sci USA 79:5611–5615Google Scholar
  36. 33.
    Erikson J, Ar-Rushdi A, Drwinga HL, Nowell PC, Groce CM (1983) Transcriptional activation of the translocated c-myc oncogene in Burkitt lymphoma. Proc Natl Acad Sci USA 80:820–824Google Scholar
  37. 34.
    Eva A, Robbins KC, Andersen PR, Srinivasan A, Tronick SR, Reddy EP, Ellmore NW, Galen AT, Lautenberger JA, Papas TS, Westin EH, Wong-Staal F, Gallo R, Aaronson SA (1982) Cellular genes analogous to retroviral onc genes are transcribed in human tumor cells. Nature 295:116–119Google Scholar
  38. 35.
    Farabangh PJ, Fink GR (1980) Insertion of the eukaryotic transposable element Ty 1 creates a 5-base pair duplication. Nature 286:352–356Google Scholar
  39. 36.
    Feinberg AP, Vogelstein B, Droller MJ, Baylin SB, Nelkin BD (1983) Mutation affecting the 12th amino acid of the c-Ha-ras oncogene product occurs infrequently in human cancer. Science 220:1175–1177Google Scholar
  40. 37.
    Fung YKT, Crittenden LB, Fadly AM, Kung HJ (1983) Tumor induction by direct injection of cloned v-src DNA into chickens. Proc Natl Acad Sci USA 80:353–357Google Scholar
  41. 38.
    Gallo RC, Wong-Staal F (1982) Retroviruses as etiologic agents of some animal and human leukemias and lymphomas and as tools for elucidating the molecular mechanism of leukemogenesis. Blood 60:545–557Google Scholar
  42. 39.
    Gilbert F, Balaban G, Moorhead P, Bianchi D, Schlesinger H (1982) Abnormalities of chromosome 1p in human neuroblastoma tumors and cell lines. Cancer Genet Cytogenet 7: 33–42Google Scholar
  43. 40.
    Goubin G, Goldman DS, Luce J, Neiman PE, Cooper GM (1983) Molecular cloning and nucleotide sequence of a transforming gene detected by transfection of chicken B-cell lymphoma DNA. Nature (in press)Google Scholar
  44. 41.
    Goyette M, Petropoulos CJ, Shank PR, Fausto N (1983) Expression of a cellular oncogene during liver regeneration. Science 219:510–512Google Scholar
  45. 42.
    Graf T, Stehelin D (1982) Avian leukemia viruses. Oncogenes and genomic structure. Biochim Biophys Acta 651:245–271Google Scholar
  46. 43.
    Graham FL, van der Eb AJ (1973) A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52:456–467Google Scholar
  47. 44.
    Groffen J, Heisterkamp N, Reynolds FH, Stephenson JR (1983) Homology between phosphotyrosine acceptor site of human c-abl and viral oncogene products. Nature 304:167–169Google Scholar
  48. 45.
    Hall A, Marshall CJ, Spurr NK, Weiss RA (1983) Identification of transforming gene in two human sarcoma cell lines as a new member of the ras gene family located on chromosome 1. Nature 303:396–400Google Scholar
  49. 46.
    Hamlyn PH, Rabbitts TH (1983) Translocation joints c-myc and immunoglobulin λ1 genes in a Burkitt lymphoma revealing a third exon in the c-myc oncogene. Nature 304:135–139Google Scholar
  50. 47.
    Hayward WS, Neel BG, Astrin SM (1981) Activation of a cellular onc gene by promotor insertion in ALV-induced lymphoid leukosis. Nature 290:475–480Google Scholar
  51. 48.
    Hayward WS, Neel BG, Astria SM (1983) Avian leukosis viruses: activation of cellular ‘oncogenes’. In: Klein G (ed) Advances in viral oncology, vol 1. Raven Press, New York, pp 207–233Google Scholar
  52. 49.
    Heisterkamp N, Groffen J, Stephenson JR, Spurr NK, Goodfellow PN, Solomon E, Carritt B, Bodmer WF (1982) Chromosomal localization of human cellular homologues of two viral oncogenes. Nature 299:747–749Google Scholar
  53. 50.
    Heisterkamp N, Stephenson JR, Groffen J, Hansen PF, de Klein A, Bartram CR, Grosveld G (1983) Localization of the c-abl oncogene adjacent to a translocation breakpoint in chronic myelocytic leukemia. Nature 306:239–242Google Scholar
  54. 51.
    Hinuma Y, Nagata K, Hanaoka M, Nakai M, Matsumoto T, Kinoshita K, Shirakawa S, Moyoshi J (1981) Adult T-cell leukemia antigen in an ATL cell line and detection of antibodies to the antigen in human sera. Proc Natl Acad Sci USA 78:6476–6480Google Scholar
  55. 52.
    Hoffmann-Falk A, Einat P, Shilo BZ, Hoffmann FM (1982) Drosophila melanogaster DNA clones homologous to vertebrate oncogenes: evidence for a common ancestor for the src and abl cellular genes. Cell 32:589–598Google Scholar
  56. 53.
    Huebner RJ, Todaro GJ (1969) Oncogenes of RNA tumor viruses as determinants of cancer. Proc Natl Acad Sci USA 64: 1087–1094Google Scholar
  57. 54.
    Kasuga M, Fujita-Yamaguchi Y, Blithe DL, Kahn CR (1983) Tyrosine specific protein kinase activity is associated with the purified insulin receptor. Proc Natl Acad Sci USA 80:2137–2141Google Scholar
  58. 56.
    Klein G (1981) The role of gene dosage and genetic transpositions in carcinogenesis. Nature 294:313–318Google Scholar
  59. 57.
    Klein G (1981) Viruses and cancer. In: Burchenai JH, Oettgen HF (eds) Cancer: achievements, challenges, and prospects for the 1980s, vol. 1. Grune and Stratton, New York, pp 81–100Google Scholar
  60. 58.
    de Klein A, Geurts van Kessel A, Grosveld G, Bartram CR, Hagemeijer A, Bootsma D, Spurr NK, Heisterkamp N, Groffen J, Stephenson JR (1982) A cellular oncogene is translocated to the Philadelphia chromosome in chornic myelocytic leukaemia. Nature 300:765–767Google Scholar
  61. 59.
    Klempnauer KH, Ramsay G, Bishop JM, Moscovici MG, Moscovici C, McGrath JP, Levinson AD (1983) The product of the retroviral transforming gene v-myb is a truncated version of the protein encoded by the cellular oncogene c-myb. Cell 33: 345–355Google Scholar
  62. 60.
    Kloetzer WS, Maxwell SA, Arlinghaus RB (1983) p85gag-mos encoded by ts 110 Moloney murine sarcoma virus has an associated protein kinase activity. Proc Natl Acad Sci USA 80: 412–416Google Scholar
  63. 61.
    Krontiris TJ, Cooper GM (1981) Transforming activity of human tumor DNAs. Proc Natl Acad Sci USA 78:1181–1184Google Scholar
  64. 62.
    Lane MA, Sainten A, Cooper GM (1981) Activation of related transforming genes in mouse and human mammary carcinomas. Proc Natl Acad Sci USA 78:5185–5189Google Scholar
  65. 63.
    Lane MA, Sainten A, Cooper GM (1982) Stage-specific transforming genes of human and mouse B- and T-lymphocyte neoplasms. Cell 28:873–880Google Scholar
  66. 64.
    Lenoir JM, Prend'homme JL, Benheim A, Berger R (1982) Correlation between immunoglobulin light chain expression and variant translocation in Burkitt's lymphoma. Nature 298: 474–476Google Scholar
  67. 65.
    Malcolm S, Barton P, Murphy C, Ferguson-Smith MA, Bentley DL, Rabbitts TH (1982) Localization of human immunoglobulin ϰ light chain variable region genes to the short arm of chromosome 2 by in situ hybridization. Proc Natl Acad Sci USA 79: 4957–4961Google Scholar
  68. 66.
    Manzari V, Gallo RC, Franchini G, Westin E, Ceccherini-Nelli C, Popovic M, Wong-Staal F (1983) Abundant transcription of a cellular gene in T cells infected with human T cell leukemialymphoma virus. Proc Natl Acad Sci USA 80:11–15Google Scholar
  69. 67.
    Marcu KB, Harris LJ, Stanton LW, Erikson J, Watt R, Croce CM (1983) Transcriptionally active c-myc oncogene is contained within N1 ARD, a DNA sequence associated with chromosome translocations in B-cell neoplasia. Proc Natl Acad Sci USA 80: 519–523Google Scholar
  70. 68.
    Marshall CJ, Hall A, Weiss RA (1982) A transforming gene present in human sarcoma cell lines. Nature 299:171–173Google Scholar
  71. 69.
    Martin GS (1970) Rous sarcoma virus: A function required for the maintenance of the transformed state. Nature 227:1021–1023Google Scholar
  72. 70.
    de Martinville B, Giacalone J, Shih C, Weinberg RA, Francke U (1983) Oncogene from EJ bladder carcinoma is located on the short arm of chromosome 11. Science 219:498–501Google Scholar
  73. 71.
    McCoy MS, Toole JT, Cunningham JM, Chang EH, Lowy DR, Weinberg RA (1983) Characterization of a human colon/lung carcinoma oncogene. Nature 302:79–81Google Scholar
  74. 72.
    Müller R, Slamon DJ, Tremblay JM, Cline MJ, Verma JM (1982) Differential expression of cellular oncogenes cloning pre- and post-natal development of the mouse. Nature 299:640–644Google Scholar
  75. 73.
    Müller R, Verma JM, Adamson ED (1983) Expression of c-onc genes: c-fos transcripts accumulate to high levels during development of mouse placenta, yolk sac and amnion. EMBO J 2: 679–684Google Scholar
  76. 74.
    Müller R, Slamon DJ, Adamson ED, Tremblay JM, Müller D, Cline MJ, Verma JM (1983) Transcription of c-onc genes c-rasKJ and c-fms during mouse development. Mol Cell Biol 3: 1062–1069Google Scholar
  77. 75.
    Murayama M (1966) Molecular mechanism of red cell ‘sickling’. Science 153:145–149Google Scholar
  78. 76.
    Murray MJ, Shilo B, Shih C, Cowing D, Hsu HW, Weinberg RA (1981) Three different human tumor cell lines contain different oncogenes. Cell 25:355–361Google Scholar
  79. 77.
    Murray MJ, Cunningham JM, Parada LF, Dautry F, Lebowitz P, Weinberg RA (1983) The HL-60 transforming sequence: a ras oncogene coexisting with altered myc genes in hematopoietic tumors. Cell 33:749–757Google Scholar
  80. 78.
    Neel BG, Jhanwar SC, Chaganti RSK, Hayward WS (1982) Two human c-onc genes are located on the long arm of chromosome 8. Proc Natl Acad Sci USA 79:7842–7846Google Scholar
  81. 79.
    Nowell PC, Hungerford DA (1960) A minute chromosome in human chronic granulocytic leukemia. Science 132:1497Google Scholar
  82. 80.
    O'Brien SJ, Nash WG, Goodwin JL, Lowy DR, Chang EH (1983) Dispersion of the ras family of transforming genes to four different chromosomes in man. Nature 302:839–842Google Scholar
  83. 81.
    Oppermann H, Levinson AD, Varmus HE, Levintow L, Bishop JM (1979) Uninfected vertebrate cells contain a protein that is closely related to the product of the avian sarcoma virus transforming gene (src). Pro Natl Acad Sci USA 76:1804–1808Google Scholar
  84. 82.
    Pareda LF, Tabin CJ, Shih C, Weinberg RA (1982) Human EJ bladder carcinoma oncogene is homologue of Harvey sarcoma virus rasgene. Nature 297:474–478Google Scholar
  85. 83.
    Perry RP (1983) Consequences of myc invasion of immunoglobulin loci: facts and speculations. Cell 33:647–649Google Scholar
  86. 84.
    Perucho M, Goldfab M, Shimizu K, Lama C, Fogh J, Wigler M (1981) Human-tumor derived cell lines contain common and different transforming genes. Cell 27:467–476Google Scholar
  87. 85.
    Perutz MF, Lehmann H (1968) Molecular pathology of human haemoglobin. Nature 219:902–909Google Scholar
  88. 86.
    Popovic M, Sarin PS, Robert-Gurroff M, Kalyanaraman VS, Manu D, Minowada J, Gallo RC (1983) Isolation and transmission of human retrovirus (human T-cell leukemia virus). Science 219:856–859Google Scholar
  89. 87.
    Pulciani S, Santos E, Lanver AV, Long LK, Aaronson SA, Barbacid M (1982) Oncogenes in solid human tumours. Nature 300:539–542Google Scholar
  90. 88.
    Reddy EP, Reynolds RK, Santos E, Barbacid M (1982) A point mutation is responsible for the acquisition of transforming properties by the T24 human bladder carcinoma oncogene. Nature 300:149–152Google Scholar
  91. 89.
    Reddy EP, Smith MJ, Srinivasan A (1983) Nucleotide sequence of Abelson murine leukemia virus genome: structural similarity of its transforming gene product to other onc gene products with tyrosine-specific kinase activity. Proc Natl Acad Sci USA 80:3623–3627Google Scholar
  92. 90.
    Robert-Guroff M, Kalyanaraman VS, Blattner WA, Popovic M, Sarngadharan MG, Maeda M, Blayney D, Catovsky D, Bunn PA, Shibata A, Nakao Y, Ito Y, Aoki T, Gallo RC (1983) Evidence for human T cell lymphoma-leukemia virus infection of family members of human T cell lymphoma-leukemia virus positive T cell leukemia-lymphoma patients. J Exp Med 157:248–258Google Scholar
  93. 91.
    Robbins KC, Devare SY, Reddy EP, Aaronson SA (1982) In vivo identification of the transforming gene product of simian sarcoma virus. Science 218:1131–1133Google Scholar
  94. 92.
    Roth RA, Cassell DJ (1983) Insulin receptor: evidence that it is a protein kinase. Science 219:299–301Google Scholar
  95. 92a.
    Rous P (1910) A transmissible avian neoplasm (sarcoma of the common fowl). J Exp Med 12:696–705Google Scholar
  96. 93.
    Rowley JD (1973) A new consistent chromosomal abnormality in chronic myelogenous leukaemia identified by quinacrine fluorescence and Giemsa staining. Nature 243:290–293Google Scholar
  97. 94.
    Rowley J (1982) Identification of the constant chromosome regions involved in human hematologic malignant disease. Science 216:749–751Google Scholar
  98. 95.
    Sakaguchi AY, Naylor SL, Shows TB, Toole JJ, McCoy M, Weinberg RA (1983) Human c-Ki-ras proto-oncogene on chromosome 12. Science 219:1081–1083Google Scholar
  99. 96.
    Sakaguchi AY (1983) Genetic organization of human protooncogenes. In: O'Connor TE, Rauscher FJ (eds) Oncogenes and retroviruses: evaluation of basic findings and clinical potential. Alan R Liss Inc, New York, pp 93–103Google Scholar
  100. 97.
    Sandberg AA (1980) The chromosomes in human cancer and leukemia. Elsevier, New York AmsterdamGoogle Scholar
  101. 98.
    Santos E, Tronick SR, Aaronson SA, Pulciani S, Barbacid M (1982) T24 human bladder carcinoma oncogene is an activated form of the normal homologue of Balb- and Harvey-MSV transforming genes. Nature 218:343–347Google Scholar
  102. 99.
    Shiba T, Saijo K (1983) Retrovirus-like particles containing RNA homologous to the transposable element copia in Drosophila melanogasto. Nature 302:119–124Google Scholar
  103. 100.
    Shih C, Padhy LC, Murray M, Weinberg RA (1981) Transforming genes of carcinomas and neuroblastomas introduced into mouse fibroblasts. Nature 290:261–264Google Scholar
  104. 101.
    Shilo BZ, Weinberg R (1981) DNA sequences homologous to vertebrate oncogenes are conserved in Drosophila melanogaster. Proc Natl Acad Sci USA 78:6789–6792Google Scholar
  105. 102.
    Shimizu K, Goldfarb M, Perudio M, Wigler M (1983) Isolation and preliminary characterization of the transforming gene of a human neuroblastoma cell line. Proc Natl Acad Sci USA 80: 383–387Google Scholar
  106. 103.
    Simon MA, Kornberg TB, Bishop JM (1983) Three loci related to the src oncogene and thyrosine-specific protein kinase activity in Drosophila. Nature 302:837–839Google Scholar
  107. 104.
    Spector DH, Varmus HE, Bishop JM (1978) Nucleotide sequences related to the transforming gene of avian sarcoma virus are present in DNA of uninfected vertebrates. Proc Natl Acad Sci USA 75:4102–4106Google Scholar
  108. 105.
    Stehelin D, Varmus HE, Bishop JM, Vogt PK (1976) DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA. Nature 260:170–173Google Scholar
  109. 106.
    Stiles CD (1983) The molecular biology of platelet-derived growth factor. Cell 33:653–655Google Scholar
  110. 107.
    Swanstrom R, Parker RC, Varmus HE, Bishop JM (1983) Translocation of a cellular oncogene: The genesis of Rous sarcoma virus. Proc Natl Acad Sci USA 80:2519–2523Google Scholar
  111. 108.
    Tabin CJ, Bradley SM, Bargmann CJ, Weinberg RA, Papageorge AG, Scolnick EM, Dhar R, Lowry DR, Chang EH (1982) Mechanism of activation of a human oncogene. Nature 300:143–149Google Scholar
  112. 109.
    Taparowsky E, Suard Y, Fasano O, Shimizu K, Goldfarb M, Wigler M (1982) Activation of the T24 bladder carcinoma transforming gene is linked to a single amino acid change. Nature 300:762–765Google Scholar
  113. 110.
    Taub R, Kirsch I, Morton C, Lenoir G, Swan D, Tronick S, Aaronson S, Leder P (1982) Translocation of the c-myc gene into the immunoglobulin heavy chain locus in human Burkitt lymphoma and murine plasmacytoma cells. Proc Natl Acad Sci USA 79:7837–7841Google Scholar
  114. 111.
    Termin HM, Chen ISY, Watanabe S, Wilhelmsen K (1983) Evolution of retroviruses. In: Robberson DL, Saunders GF (eds) Perspectives on genes and the molecular biology of cancer. Raven Press, New York, pp 243–354Google Scholar
  115. 112.
    Temin HM (1980) Origin of retroviruses from cellular moveable genetic elements. Cell 21:599–600Google Scholar
  116. 113.
    Varmus HE (1982) Form and function of retroviral proviruses. Science 216:812–820Google Scholar
  117. 114.
    Waterfield MD, Scrace GT, Whittle N, Stroobant P, Johnsson A, Wasteson A, Westermark B, Heldin CH, Huang JS, Deuel TF (1983) Platelet-derived growth factor is structurally related to the putative transforming protein p28sis of simian sarcoma virus. Nature 304:35–39Google Scholar
  118. 115.
    Westin EH, Wong-Staal F, Gelman EP, Dalla-Favera R, Papas TS, Launterberger JA, Eva A, Reddy EP, Tronick SR, Aaronson SA, Gallo RC (1982) Expression of cellular homologues of retroviral onc genes in human hematopoietic cells. Proc Natl Acad Sci USA 79:2490–2494Google Scholar
  119. 116.
    Williamson R (ed) (1981) Genetic engineering 1 and 2. Academic Press, TorontoGoogle Scholar
  120. 117.
    Williamson R (ed) (1982) Genetic engineering 3. Academic Press, TorontoGoogle Scholar
  121. 118.
    Wierenga RK, Hol WGJ (1983) Predicted nucleotide-binding properties of p21 protein and its cancer-associated variant. Nature 302:842–844Google Scholar
  122. 119.
    Wong-Staal F, Hahn B, Manzori V, Colombini S, Franchini G, Gelmann EP, Gallo RC (1983) A survey of human leukemias for sequences of a human retrovirus. Nature 302:626–628Google Scholar
  123. 120.
    Wong-Staal F, Gallo RC (1983) The transforming genes of primate and other retroviruses and their human homologs. In: Klein G (ed) Advances in viral oncology, vol 1. Raven Press, New York, pp 153–171Google Scholar
  124. 121.
    Yuasa Y, Srivastava SK, Dunn CY, Rhim JS, Reddy EP, Aaronson SA (1983) Acquisition of transforming properties by alternative point mutations within c-bas/has human protooncogene. Nature 303:775–779Google Scholar
  125. 122.
    Yunis JJ (1981) Chromosomes and cancer: new nomenclature and future directions. Hum Pathol 12:494–503Google Scholar
  126. 123.
    Yunis JJ (1981) Specific fine chromosomal defects in cancer: an overview. Hum Pathol 12:503–515Google Scholar
  127. 124.
    Yunis JJ (1983) The chromosomal basis of human neoplasia. Science 221:227–236Google Scholar

Copyright information

© Springer-Verlag 1984

Authors and Affiliations

  • C. R. Bartram
    • 1
  1. 1.Department of Cell Biology and GeneticsErasmus University RotterdamRotterdamThe Netherlands

Personalised recommendations