European Journal of Pediatrics

, Volume 147, Issue 1, pp 64–67 | Cite as

The effect of L-asparaginase on lipid metabolism during induction chemotherapy of childhood lymphoblastic leukaemia

  • P. Cremer
  • M. Lakomek
  • W. Beck
  • G. Prindull
Original Investigations

Abstract

L-asparaginase is an effective antileukaemic drug and a potent inhibitor of hepatic protein synthesis. Its effect on lipid metabolism was studied in two cohorts of children with ALL, one of whom received L-asparaginase concomitantly with three other drugs (protocol BFM 79). In the second protocol (BFM 83) administration of L-asparaginase was arranged to follow the other three drugs in time sequence. The two major findings of this study were elevated serum levels of total cholesterol and a strong increase in serum triglycerides. The former change was due to an increase in α-cholesterol and could not be attributed to L-asparaginase because it was also found following protocol BFM 83 before the administration of the drug. Elevations of total triglycerides were due to high levels of exogenous chylomicron bound triglycerides and were limited in occurrence almost exclusively to the period of L-asparaginase monotherapy. Hypothyroidism was excluded as a possible pathogenetic mechanism. These changes in lipid metabolism induced by L-asparaginase during intensive remission induction chemotherapy are fully reversible.

Key words

Acute lymphoblastic leukemia L-asparaginase Lipid metabolism 

Abbreviations

ALL

acute lymphoblastic leukaemia

TRH

thyroid releasing hormone

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    American Heart Association (1984) Recommendations for the treatment of hyperlipidemia in adults. Arteriosclerosis 4:445A-468Google Scholar
  2. 2.
    American Heart Association (1986) Diagnosis and treatment of primary hyperlipidemia in childhood. Arteriosclerosis 6:685A-692AGoogle Scholar
  3. 3.
    Brown MS, Goldstein JL (1983) Lipoprotein receptors in the liver. J Clin Invest 72:743–747Google Scholar
  4. 4.
    Brunzell JD, Bierman EL (1983) Chylomicron syndrome. Med Clin North Am 66:455–461Google Scholar
  5. 5.
    Clauss A (1957) Gerinnungsphysiologische Schnellmethode zur Bestimmung des Fibrinogens. Acta Haematol 17:237–241Google Scholar
  6. 6.
    Cremer P, Seidel D, Wieland H (1985) Quantitative Lipoproteinelektrophorese: ihre routinemäßige Anwendung im Vergleich mit anderen Verfahren zur differenzierten Untersuchung des Fettstoffwechsels. Lab Med 9:39–51Google Scholar
  7. 7.
    Fallat RW, Glueck CJ (1976) Familial and acquired type V hyperlipoproteinemia. Arterosclerosis 23:41–62Google Scholar
  8. 8.
    Haskell CM, Canellose GP, Leventhal BG, Carbone PP, Sorpick AA, Hansen HH (1969) L-asparaginase toxicity. Cancer Res 29:974–975Google Scholar
  9. 9.
    Henze G, Langermann HJ, Fengler R, Brandeis M, Eviers KG, Gadner H, Hinderfeld L, Jobke A, Kornhuber B, Lampert F, Lasson U, Ludwig R, Müller-Weihrich S, Neidhardt M, Nessler G, Niethammer D, Rister M, Ritter J, Schaaff A, Schellong G, Stollmann B, Treuner J, Wahlen W, Weinel P, Wehinger H, Riehm H (1982) Therapiestudie BFM 79/81 zur Behandlung der akuten lymphoblastischen Leukämie bei Kindern und Jugendlichen: Intensivierte Reinduktionstherapie für Patientengruppen mit unterschiedlichem Rezidivrisiko. Klin Pädiatr 194:195–203Google Scholar
  10. 10.
    Lewis B (1983) The lipoproteins: predictors, protectors, pathogens. Br Med J 287:1161–1164Google Scholar
  11. 11.
    Mahley RW, Hui DY, Inneraty TL, Weisgraber KH (1981) Two independent lipoprotein receptors on hepatic membranes of the dog, swine, and man: the apo-B, E and-E receptors. J Clin Invest 68:1197–1203Google Scholar
  12. 12.
    Mishkel MA, Crowther SM (1977) Hypothyroidism, an important cause ofreversible hyperlipidemia. Clin Chim Acta 74:139–144Google Scholar
  13. 13.
    Müller-Weihrich S, Beck J, Henze G, Jobke A, Kornhuber B, Lampert F, Ludwig R, Prindull G, Schellong G, Spaar HJ, Stollmann B, Treuner J, Wahlen W, Weinel P, Riehm H (1984) BFM-Studie 1981/83 zur Behandlung hochmaligner Non-Hodgkin-Lymphome bei Kindern: Ergebnisse einer nach histologischimmunologischem Typ und Ausbreitungsstadium stratefizierten Therapie. Klin Pädiatr 196:135–142Google Scholar
  14. 14.
    Oettgen HF, Stephenson PA, Schrank MK, Leeper RD, Tallal L (1970) Toxity of E. coli L-asparaginase in man. Cancer 25:253–378Google Scholar
  15. 15.
    Schonfeld G (1983) Disorders of lipid transport. Prog Cardiovasc Dis 26:89–107Google Scholar
  16. 16.
    Seidel D, Cremer P, Thiery J (1985) Lipoproteine und Atherosklerose. Internist Welt 8:114–124, 159–165Google Scholar
  17. 17.
    Weinstock N, Bartholome M, Seidel D (1981) Determination of apolipoprotein AI by kinetic nephelometry. Biochim Biophys Acta 663:279–288Google Scholar
  18. 18.
    Wieland H, Seidel D (1977) Der Wert einer preßluftgetriebenen Kleinstultrazentrifuge für die Lipoproteindiagnostik im Routinelabor. Ärztl Lab 23:96–100Google Scholar
  19. 19.
    Wieland H, Seidel D (1983) Quantitative lipoprotein electrophoresis. In: Lewis LA (ed) CRC Handbook of Electrophoresis, vol 3. CRC Press, Boca Raton, pp 83–102Google Scholar
  20. 20.
    Wieland H, Cremer P, Seidel D (1982) Determination of apolipoprotein B by kinetic (rate) nephelometry. J Lipid Res 23:893–902Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • P. Cremer
    • 1
  • M. Lakomek
    • 2
  • W. Beck
    • 2
  • G. Prindull
    • 2
  1. 1.Abteilungen für Klinische ChemieUniversität GöttingenGöttingenGermany
  2. 2.Abteilungen für PädiatrieUniversität GöttingenGöttingenGermany

Personalised recommendations