Skip to main content
Log in

The effect of L-asparaginase on lipid metabolism during induction chemotherapy of childhood lymphoblastic leukaemia

  • Original Investigations
  • Published:
European Journal of Pediatrics Aims and scope Submit manuscript

Abstract

L-asparaginase is an effective antileukaemic drug and a potent inhibitor of hepatic protein synthesis. Its effect on lipid metabolism was studied in two cohorts of children with ALL, one of whom received L-asparaginase concomitantly with three other drugs (protocol BFM 79). In the second protocol (BFM 83) administration of L-asparaginase was arranged to follow the other three drugs in time sequence. The two major findings of this study were elevated serum levels of total cholesterol and a strong increase in serum triglycerides. The former change was due to an increase in α-cholesterol and could not be attributed to L-asparaginase because it was also found following protocol BFM 83 before the administration of the drug. Elevations of total triglycerides were due to high levels of exogenous chylomicron bound triglycerides and were limited in occurrence almost exclusively to the period of L-asparaginase monotherapy. Hypothyroidism was excluded as a possible pathogenetic mechanism. These changes in lipid metabolism induced by L-asparaginase during intensive remission induction chemotherapy are fully reversible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ALL:

acute lymphoblastic leukaemia

TRH:

thyroid releasing hormone

References

  1. American Heart Association (1984) Recommendations for the treatment of hyperlipidemia in adults. Arteriosclerosis 4:445A-468

    Google Scholar 

  2. American Heart Association (1986) Diagnosis and treatment of primary hyperlipidemia in childhood. Arteriosclerosis 6:685A-692A

    Google Scholar 

  3. Brown MS, Goldstein JL (1983) Lipoprotein receptors in the liver. J Clin Invest 72:743–747

    Google Scholar 

  4. Brunzell JD, Bierman EL (1983) Chylomicron syndrome. Med Clin North Am 66:455–461

    Google Scholar 

  5. Clauss A (1957) Gerinnungsphysiologische Schnellmethode zur Bestimmung des Fibrinogens. Acta Haematol 17:237–241

    Google Scholar 

  6. Cremer P, Seidel D, Wieland H (1985) Quantitative Lipoproteinelektrophorese: ihre routinemäßige Anwendung im Vergleich mit anderen Verfahren zur differenzierten Untersuchung des Fettstoffwechsels. Lab Med 9:39–51

    Google Scholar 

  7. Fallat RW, Glueck CJ (1976) Familial and acquired type V hyperlipoproteinemia. Arterosclerosis 23:41–62

    Google Scholar 

  8. Haskell CM, Canellose GP, Leventhal BG, Carbone PP, Sorpick AA, Hansen HH (1969) L-asparaginase toxicity. Cancer Res 29:974–975

    Google Scholar 

  9. Henze G, Langermann HJ, Fengler R, Brandeis M, Eviers KG, Gadner H, Hinderfeld L, Jobke A, Kornhuber B, Lampert F, Lasson U, Ludwig R, Müller-Weihrich S, Neidhardt M, Nessler G, Niethammer D, Rister M, Ritter J, Schaaff A, Schellong G, Stollmann B, Treuner J, Wahlen W, Weinel P, Wehinger H, Riehm H (1982) Therapiestudie BFM 79/81 zur Behandlung der akuten lymphoblastischen Leukämie bei Kindern und Jugendlichen: Intensivierte Reinduktionstherapie für Patientengruppen mit unterschiedlichem Rezidivrisiko. Klin Pädiatr 194:195–203

    Google Scholar 

  10. Lewis B (1983) The lipoproteins: predictors, protectors, pathogens. Br Med J 287:1161–1164

    Google Scholar 

  11. Mahley RW, Hui DY, Inneraty TL, Weisgraber KH (1981) Two independent lipoprotein receptors on hepatic membranes of the dog, swine, and man: the apo-B, E and-E receptors. J Clin Invest 68:1197–1203

    Google Scholar 

  12. Mishkel MA, Crowther SM (1977) Hypothyroidism, an important cause ofreversible hyperlipidemia. Clin Chim Acta 74:139–144

    Google Scholar 

  13. Müller-Weihrich S, Beck J, Henze G, Jobke A, Kornhuber B, Lampert F, Ludwig R, Prindull G, Schellong G, Spaar HJ, Stollmann B, Treuner J, Wahlen W, Weinel P, Riehm H (1984) BFM-Studie 1981/83 zur Behandlung hochmaligner Non-Hodgkin-Lymphome bei Kindern: Ergebnisse einer nach histologischimmunologischem Typ und Ausbreitungsstadium stratefizierten Therapie. Klin Pädiatr 196:135–142

    Google Scholar 

  14. Oettgen HF, Stephenson PA, Schrank MK, Leeper RD, Tallal L (1970) Toxity of E. coli L-asparaginase in man. Cancer 25:253–378

    Google Scholar 

  15. Schonfeld G (1983) Disorders of lipid transport. Prog Cardiovasc Dis 26:89–107

    Google Scholar 

  16. Seidel D, Cremer P, Thiery J (1985) Lipoproteine und Atherosklerose. Internist Welt 8:114–124, 159–165

    Google Scholar 

  17. Weinstock N, Bartholome M, Seidel D (1981) Determination of apolipoprotein AI by kinetic nephelometry. Biochim Biophys Acta 663:279–288

    Google Scholar 

  18. Wieland H, Seidel D (1977) Der Wert einer preßluftgetriebenen Kleinstultrazentrifuge für die Lipoproteindiagnostik im Routinelabor. Ärztl Lab 23:96–100

    Google Scholar 

  19. Wieland H, Seidel D (1983) Quantitative lipoprotein electrophoresis. In: Lewis LA (ed) CRC Handbook of Electrophoresis, vol 3. CRC Press, Boca Raton, pp 83–102

    Google Scholar 

  20. Wieland H, Cremer P, Seidel D (1982) Determination of apolipoprotein B by kinetic (rate) nephelometry. J Lipid Res 23:893–902

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cremer, P., Lakomek, M., Beck, W. et al. The effect of L-asparaginase on lipid metabolism during induction chemotherapy of childhood lymphoblastic leukaemia. Eur J Pediatr 147, 64–67 (1988). https://doi.org/10.1007/BF00442614

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00442614

Key words

Navigation