European Journal of Pediatrics

, Volume 147, Issue 2, pp 158–161 | Cite as

Prevention of neonatal hypoglycaemia by oral lipid supplementation in low birth weight infants

  • L. Sann
  • B. Mousson
  • M. Rousson
  • I. Maire
  • M. Bethenod
Original Investigations

Abstract

The effect of oral lipid supplementation (2.9 g/day containing 67% medium chain triglycerides) on the prevention of neonatal hypoglycaemia was evaluated in 28 low birth weight infants (mean±1 SD for gestational age: 36±1.2 weeks and birth weight: 1778±230 g) and compared to a control group of 23 infants with similar gestational age, birth weight and sex. The incidence of hypoglycaemic patients with plasma glucose <1.72 mmol/l was 8/23 (35%) in the control group versus 2/28 (7%) in the supplemented group: χ2=6.72; P<0.01. Determinations of plasma beta-hydroxybutyrate concentrations in 11 infants of the supplemented group did not show values higher than 1.2 mmol/l. This prospective study shows that supplementation with lipids can prevent the occurrence of hypoglycaemia in low birth weight infants.

Key words

Newborn infants Glucose homeostasis Medium chain triglycerides Ketogenesis Hypoglycaemia 

Abbreviation

FFA

free fatty acids

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adam PAJ, Raiha N, Raihala EL Kekomaki (1975) Oxidation of glucose and D-β-butyrate by the early human fetal brain. Acta Paediatr Scand 64:17–24Google Scholar
  2. 2.
    Bougnères PF, Zemmel C, Ferre P, Bier DM (1985) Ketone body transport in the human neonate and infant. J Clin Invest 77:42–48Google Scholar
  3. 3.
    Cornblath M, Schwartz R (1976) Disorders of carbohydrate metabolism in infancy. Saunders, Philadelphia, pp 155–217Google Scholar
  4. 4.
    Churchill JA, Berendes HW, Nemore J (1969) Neuropsychological deficits in children of diabetic mothers. Am J Obstet Gynecol 105:257–268Google Scholar
  5. 5.
    Ferre P, Pegorier JP, Marliss EB, Girard JR (1978) Influence of exogenous fat and gluconeogemic substrates in glucose homeostasis in the newborn rat. Am J Physiol 234:129–136Google Scholar
  6. 6.
    Fitzhardinge PM, Eisen A, Lejtengi C, Metrakos K, Ramsey M (1974) Sequelae of early steroid administration to the newborn infant. Pediatrics 53:877–883Google Scholar
  7. 7.
    Frazer TE, Karl IE, Hillman LS, Brer DM (1981) Direct measurement of gluconeogenesis from (2,3-13C2) alanine in the human neonate. Am J Physiol 240:E615–621Google Scholar
  8. 8.
    Haymond MV, Karl IE, Pagliana AS (1974) Increased gluconeogenic substrates in the small-for-gestational-age infant N Engl J Med 291:322–328Google Scholar
  9. 9.
    Jones RAK, Roberton NRC (1984) Problems of the small-for-dates baby. Clin Obstet Gynecol 11:499–524Google Scholar
  10. 10.
    Kalhan SC, Oliven A, King KC, Lucero C (1986) Role of glucose in the regulation of endogenous glucose production in the human newborn. Pediatr Res 20:49–51Google Scholar
  11. 11.
    Kraus H, Schlenker S, Schwedesky D (1974) Developmental changes of cerebral ketone body utilization in human infants. Hoppe-Seylers Z Physiol Chem 355:164–170Google Scholar
  12. 12.
    de Leeuw, de Vries JJ (1976) Hypoglycaemia in small-for-date newborn infants. Pediatrics 58:18–22Google Scholar
  13. 13.
    Lubchenco LO, Hansman C, Boyd E (1966) Intrauterine growth in length and head circumference as estimated from live births as gestational ages from 26 to 42 weeks. Pediatrics 37:403–408Google Scholar
  14. 14.
    Naeye RL, Chez RA (1981) Effects of maternal acetonuria and low pregnancy weight gain on children's psychomotor development. Am J Obstet Gynecol 139:193–198Google Scholar
  15. 15.
    Okkley JR, Parsons RJ (1977) Skinfold thickness as an indication of neonatal hypoglycaemia in infants with birth weights over 2500 g. Dev Med Child Neurol 19:585–588Google Scholar
  16. 16.
    Page MA, Williamson DH (1981) Enzymes of ketone body utilization in human brain. Lancet II:66–68Google Scholar
  17. 17.
    Persson B, Gentz J (1976) The pattern of blood lipids and ketone bodies during the neonatal period, infancy and childhood. Acta Paediatr Scand 55:353–362Google Scholar
  18. 18.
    Sabel KG, Olegard R, Mellander M, Hildingsson K (1982) Interrelationship between fatty acid oxidation and control of gluconeogenic substrates in small-for-gestational (SFA) infants with hypoglycaemia and with normoglycaemia. Acta Paediatr Scand 71:53–61Google Scholar
  19. 19.
    Sann L, Mathieu M, Lasne Y, Ruitton A (1981) Effect of oral administration of lipids with 67% medium chain triglycerides on glucose homeostasis in preterm neonates. Metabolism 30:712–716Google Scholar
  20. 20.
    Sann L, Divry P, Lasne Y, Ruitton A (1982) Effect of oral lipid administration on glucose homeostasis in smal-for-gestationalage infants. Acta Paediatr Scand 71:923–927Google Scholar
  21. 21.
    Sann L, Morel Y, Lasne Y (1983) Effects of hydrocortisone on intravenous glucose tolerance in small-for-gestational-age infants. Helv Paediatr Acta 38:475–482Google Scholar
  22. 22.
    Scott K, Usher R, McLean F (1963) Postnatal study for fetal malnutrition syndrome. J Pediatr 63:734Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • L. Sann
    • 1
  • B. Mousson
    • 2
  • M. Rousson
    • 2
  • I. Maire
    • 2
  • M. Bethenod
    • 1
  1. 1.Department of Neonatology, Faculté Lyon NordHôpital DebrousseLyonFrance
  2. 2.Laboratory of Biology, Faculté Lyon NordHôpital DebrousseLyonFrance

Personalised recommendations