Skip to main content
Log in

Population changes induced in Candida albicans by nalidixic acid

  • Published:
Mycopathologia Aims and scope Submit manuscript

Abstract

Cells of Candida albicans plated on media containing nalidixic acid (Nal) either die, adapt physiologically to Nal-tolerance or mutate to Nal-resistance. The fraction of a population exhibiting each response depends on the growth phase of cells when plated and their nitrogen and carbon nutrition and growth temperatures before and after plating. Nal induces Nal-resistant mutants in very high frequency but only at 37 C on plates containing i) glucose as primary carbon source and ii) adenine, a sulfur amino acid or a representative of the glutamic acid family of amino acids. Nal does not affect either forward mutation to caffeine-resistance or reverse mutation from histidine auxotrophy to prototrophy. Nal-resistant mutants produce minute colonies on Nal-free medium, respire oxidatively and are unusually sensitive to inhibitors of oxidative phosphorylation. They revert spontaneously to wild type at very high rates but can be propagated indefinitely in the absence of Nal by serial selection and replating of minute colonies. Cellular inactivation and induction of Nal-resistant mutants are greatly affected by specific inhibitors of mitochondrial macromolecular syntheses. The presence of chloramphenicol or erythromycin during exposure to Nal prevents cell death and mutation but has no effect on adaptation to Nal-tolerance. Growth on acriflavin or ethidium bromide enhances resistance of cells to inactivation when subsequently plated on Nal containing media. It is concluded that Nal-induced cellular inactivation and mutation to Nal-resistance, but not adaptation to Nal-tolerance, result from damages to the mitochondrion which are fixed or promoted by macromolecular syntheses within the mitochondrion. Implications of these findings for the therapeutic use of Nal are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bandlow, W. & F. Kandewitz. 1974. Action of ethidium bromide on mitochondrial DNA in the petite-negative yeast Schizosaccharomyces pombe. Molec. Gen. Genet. 131: 333–338.

    Google Scholar 

  2. Busbee, D.L. & A. Sarachek. 1969. Inactivation of Candida albicans by ultraviolet radiation. Arch. Microbiol. 64: 289–314.

    Google Scholar 

  3. Carnevali, F., L.E. Sarcoe & P.A. Whittaker. 1976. Differential effects of nalidixate on the cell growth of respiratory competent strains and cytoplasmic petite mutants of Saccharomyces cerevisiae. Molec. gen. Genet. 146: 95–100.

    Google Scholar 

  4. Chao, L. 1977. Nalidixic acid-induced protein alterations in Escherichia coli. Antimicrob. Agents Chemother. 11: 167–170.

    Google Scholar 

  5. Cook, T.M., K.G. Brown, I.V. Royle & W. A. Goss. 1966 Bacteriocidal action of nahoicix acid on Bacillus subtilis. J. Bacteriol., 92: 1510–1514.

    Google Scholar 

  6. Crumplin, G.C. & J.T. Smith. 1975. Nalidixic acid: an antibacterial paradox. Antimicrob. Agents Chemother. 8: 251–261.

    Google Scholar 

  7. deCastro, J.F., J.F.O. Carvalho, N. Moussatche & F.T. deCastro. 1975. Nalidixic acid macromolecular metabolism in Tetrahymena pyriformis: effects on protein synthesis. Antimicrob. Agents Chemother. 7: 487–493.

    Google Scholar 

  8. Fukuhara, H. and C. Kujawa. 1970. Selective inhibition of the in vivo transcription of mitochondrial DNA by ethidium bromide and by acriflavin. Biochem. Biophys. Res. Commun. 41: 1002–1008.

    Google Scholar 

  9. Gellert, M., K. Mizuuchi, M. O'Dea, T. Itoh & J. Tomizawa. 1977. Nalidixic acid resistance: a second genetic character involved in DNA gyrase activity. Proc. Natl. Acad. Sci. (USA) 74: 4772–4776.

    Google Scholar 

  10. Germond, J.E., B. Hirt, P. Oudet, M. Gross-Bellard & P. Chambon. 1975. Folding of the DNA double helix in chromatin-like structures from simian virus 40. Proc. Natl. Acad. Sci (USA) 72: 1843–1847.

    Google Scholar 

  11. Grivell, L.A. & V. Metz. 1973. Inhibition by ethidium bromide of mitochondrial protein synthesis programmed by imported poly (u). Biochem. Biophys. Res. Commun. 55: 125–131.

    Google Scholar 

  12. Gross, F.J. & D.G. Smith. 1972. The effect of nalidixic acid on growth and petite formation in Saccharomyces cerevisiae. Microbiol. 6: 139–146.

    Google Scholar 

  13. Gross, W.A. 1969. Nalidixic Acid: biological prolife. Urol. Panam. 1: 103–122.

    Google Scholar 

  14. Hamilton, P.B., D. Rosi, G.P. Peruzzotti & E.D. Neilson. 1969. Microbiological metabolism of naphthyridines. Appl. Microbiol. 17: 237–241.

    Google Scholar 

  15. Helling, R.B. & J.S. Kukora. 1971. Nalidixic acid-resistant mutants of Escherichia coli deficient in isocitrate dehydrogenase. J. Bacteriol. 105: 1224–1226.

    Google Scholar 

  16. Huede, M. & R. Chanet. 1975. Protein synthesis and the recovery of both survival and cytoplasmic ‘petite’ mutation in ultraviolet-treated yeast cells. II. Mitochondrial protein synthesis. Mutation Res. 28: 47–55.

    Google Scholar 

  17. Kot, E.J., V.L. Olson, L.J. Rolewic & D.O. McClary. 1976. An alternate pathway in Candida albicans. Antonie van Leeuwenhoek 42: 33–48.

    Google Scholar 

  18. Lakshmi, T.J. & R.B. Helling. 1976. Selection for citrate synthetase deficiency in icd mutants of Escherichia coli. J. Bacteriol. 127: 76–83.

    Google Scholar 

  19. Linnane, A.W., J.M. Haslam, H.B. Lukins & P. Nagley. 1972. The biogenesis of mitochondria in microorganisms. Ann. Rev. Microbiol. 26: 163–198.

    Google Scholar 

  20. Luha, A.A., L.E. Sarcoe & P.A. Whittaker. 1971. Biosynthesis of yeast mitochondria. Drug effects on the petite negative yeast Kluyveromyces lactis. Biochem. Biophys. Res. Commun. 44: 396–402.

    Google Scholar 

  21. Luria, S.E. & M. Delbruck. 1943. Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28: 491–511.

    Google Scholar 

  22. Lyman, H. 1967. Specific inhibition of chloroplast replication in Euglena gracilis by nalidixic acid. J. Cell. Biol. 35: 726–730.

    Google Scholar 

  23. Mahler, H.R., C. Perlman, C. Henson & C. Weber. 1968. Selective effects of chloramphenicol, cyclohexamide and nalidixic acid on the biosynthesis of respiratory enzymes in yeast. Biochem. Biophys. Res. Commun. 31: 474–480.

    Google Scholar 

  24. McChesney, E.W., E.J. Froelich, G.Y. Lesher, A.V.R. Crain & D. Rosi. 1964. Absorption excretion and metabolism of a new antibacterial agent nalidixic acid. Toxicology and Applied Pharmacology 6: 282–209.

    Google Scholar 

  25. Michels, C.A., J. Blamire, B. Goldfinger & J. Marmur. 1973. Studies on the action of nalidixic acid in the yeast Saccharomyces cerevisiae. Antimicrob. Agents Chemother. 3: 562–567.

    Google Scholar 

  26. Nagai, S., N. Yanagishima & H. Nagai. 1961. Advances in the study of respiration-deficient (RD) mutation in yeast and other microorganisms. Bact. Rev. 25: 404–426.

    Google Scholar 

  27. Ogur, F., R. St. John & S. Nagai. 1957. Tetrazolium overlay technique for population studies of respiration deficiency in yeast. Science 125: 928–929.

    Google Scholar 

  28. Pienkos, P., A. Walfield & C.L. Hershberger. 1974. Effect of nalidixic acid on Euglena gracilis: induced loss of chloroplast deoxyribonucleic acid. Arch. Biochem. Biophys. 165: 548–553.

    Google Scholar 

  29. Puga, A. & I. Tessman. 1973. Mechanism of transcription of bacteriophage S 13 II. Inhibition of phage-specific transcription by nalidixic acid. J. Mol. Biol. 75: 99–108.

    Google Scholar 

  30. Robreau, G., G. Jensen & Y. LeGal. 1973. Isolement de mutants reistants a l'acide nalidixique Chez Chlamydomonas reinhardtii. C.R. Acad. Sci. Paris 277: 1699–1702.

    Google Scholar 

  31. Sarachek, A., R.V. Goering & J.T. Bish. 1969. Differential effects of growth temperature on inactivation and mutation of Candida albicans by ultraviolet radiation. Arch. Microbiol. 67: 189–198.

    Google Scholar 

  32. Schatz, G., G.S. Groot, T. Mason, W. Rouslin, D.C. Wharton & J. Salitzgaber. 1972. Biogenesis of mitochondrial inner membranes in bakers yeast. Fed. Proc. 31: 21–29.

    Google Scholar 

  33. Sherman, F. & P.P. Slonimski. 1964. Respiration-deficient mutants of yeast. II. Biochemistry. Biochim. Biophys. Acta. 90: 1–15.

    Google Scholar 

  34. Shuman, H. & M. Schwartz. 1975. The effect of nalidixic acid on the expression of some genes in Escherichia coli K-12. Biochem. Biophys. Res. Commun. 64: 204–209.

    Google Scholar 

  35. Sobieski, R.J. & A.R. Brewer. 1976. Toxicity of nalidixic acid on Candida albicans, Saccharomyces cerevisiae and Klyveromyces lactis. Antimicrob. Agents Chemother. 9: 485–492.

    Google Scholar 

  36. Sugino, A., C.L. Peebles, K.N. Kreuzer & N.R. Cozzarelli. 1977. Mechanism of action of nalidixic acid: purification of Escherichia coli nal A gene product and its relationship to DNA gyrase and a novel nicking-closing enzyme. Proc. Acad. Sci. (USA) 74: 4767–4771.

    Google Scholar 

  37. Vigier, P.R. 1974. Effet mutagene de l'acide nalidixique sur le bacteriophage T4. Mutation Res. 25: 25–32.

    Google Scholar 

  38. Wehr, C.T., R.D. Kudrna & L.W. Parks. 1970. Effect of putative deoxyribonucleic acid inhibitors on macro-molecular synthesis in Saccharomyces cerevisiae. J. Bacteriol. 102: 636–641.

    Google Scholar 

  39. Whittaker, P.A., R.C. Hammond & A.A. Luha. 1972. Mechanism of mitochondrial mutation in yeast. Nature, New Biology 238: 266–268.

    Google Scholar 

  40. Yamabe, S. 1976. Cytochrome c reduction by nalidixic and piromidic acids. J. of Antimicrobial Chemotherapy 2: 299–305.

    Google Scholar 

  41. Yamabe, S. 1978. The effect of nalidixic acid group compounds on reduction of cytochrome c from horse heart and Candida krusei. J. Gen. Microbiol. 105: 227–232.

    Google Scholar 

  42. Yamabe, S. & M. Shimizu. 1977. Combination effects of chemotherapeutic agents: I. Antagonistic effects of 1,10 phenanthroline with nalidixic acid and piromidic acid on the growth of Escherichia coli. J. of Antimicrobial Chemotherapy 3: 101–104.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sarachek, A. Population changes induced in Candida albicans by nalidixic acid. Mycopathologia 68, 105–120 (1979). https://doi.org/10.1007/BF00441090

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00441090

Keywords

Navigation