Archives of Orthopaedic and Trauma Surgery

, Volume 113, Issue 1, pp 12–19 | Cite as

Pressure distribution at the knee joint

Influence of varus and valgus deviation without and with ligament dissection
  • J. Bruns
  • M. Volkmer
  • S. Luessenhop
Original Article


Traumata or repetitive microtraumata, malalignment with varus or valgus deviation, or chronic joint instability are discussed in the aetiology of osteoarthritis and osteochondritis dissecans of the knee. Biomechanical factors influencing the patterns of pressure distribution at the articular surface and the subchondral bone are suggested to be most important in the pathogenesis. Consequently, the patterns of pressure distribution at the femoral condyles of weight-bearing knee joints were investigated in a cadaveric biostatic model. The pressure in the articular joint space was evaluated with pressure-sensitive films of the knee in different joint positions in the coronal plane (10° varus, 10° valgus, and neutral position) without and with medial collateral ligament (MCL), lateral CL (LCL), MCL + anterior cruciate ligament (ACL) or LCL + ACL ligament division. Results demonstrated that the location of the contact area and the peak pressure depended on the joint position and stage of ligamentous division. Without ligament division, a maximum peak pressure was observed at the medial condyle in the neutral and varus positions. Only in the valgus position did the lateral condyle show a higher peak of pressure than the medial condyle. Ligament division of the LCL and LCL + ACL resulted in an increase of peak pressure at the medial condyle, particularly in the varus position. Division of the MCL and MCL + ACL ligament complex reduced the differences between the medial and lateral condyle. In the valgus position, the peak pressure was significantly higher at the lateral condyle. The absolute maximum peak pressure was measured in the varus position at the medial condyle after division of the LCL and ACL. The absolute minimum was found in the valgus position at the medial condyle after division of the MCL and ACL. No significant change of the location of the centre of peak pressure area was observed due to the different joint positions.


Anterior Cruciate Ligament Pressure Distribution Peak Pressure Medial Collateral Ligament Joint Position 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ahmed AM, Burke DL (1983) In-vitro measurement of static pressure distribution in synovial joints, part I. J Biomech Eng 105:216–225Google Scholar
  2. 2.
    Aichroth P (1971) Osteochondral fractures and their relationship to osteochondritis dissecans of the knee. J Bone Joint Surg [Br] 53:448–454Google Scholar
  3. 3.
    Alexander AH, Lichtman DM (1980) Surgical treatment of transchondral talar-dome fractures (osteochondritis dissecans). J Bone Joint Surg [Am] 62:646–652Google Scholar
  4. 4.
    Anderson JJ, Felson DT (1988) Factors associated with osteoarthritis of the knee in the first national health and nutrition examination survey (HANES I). Am J Epidemiol 128:179–189Google Scholar
  5. 5.
    Andriacchi TP, Anderson GBJ, Örtengren R, Mikosz RP (1984) A study of factors influencing muscle activity about the knee joint. J Orthop Res 1:266–275Google Scholar
  6. 6.
    Arcq M (1974) Behandlung der Osteochondrosis dissecans durch Knochenspanbolzung. Arch Orthop Unfall Chir 79:297–312Google Scholar
  7. 7.
    Bandi W (1978) Zur Pathogenese der Osteochondrosis dissecans. Unfallheilkunde 81:295–298Google Scholar
  8. 8.
    Baratz ME, Rehak DC, Fu FH, Rudert MJ (1988) Peripheral tears of the meniscus. Am J Sports Med 16:1–6Google Scholar
  9. 9.
    Bradley J, Dandy DJ (1989) Osteochondritis dissecans and other lesions of the femoral condyles. J Bone Joint Surg [Br] 71:518–522Google Scholar
  10. 10.
    Brown TD, Shaw DT (1984) In vitro contact stress distribution on the femur condyles. J Orthop Res 2:190–199Google Scholar
  11. 11.
    Bruns J, Rosenbach B (1990) Pressure distribution at the ankle joint. Clin Biomech 5:153–161Google Scholar
  12. 12.
    Campbell CJ, Ranawat CS (1966) Osteochondritis dissecans: the question of etiology. J Trauma 6:201–221Google Scholar
  13. 13.
    Clanton TO, DeLee JC (1982) Osteochondritis dissecans. history, pathophysiology and current treatment concepts. Clin Orthop 167:50–64Google Scholar
  14. 14.
    Cooke TDV, Sin D, Fisher B (1987) The use of standardized radiographs to identify the deformities associated with osteoarthritis. J Bone Joint Surg [Br] 71:560–565Google Scholar
  15. 15.
    Felson DT, Anderson JJ, Naimark A, Walker AM, Meenan RE (1988) Obesity and knee osteoarthritis. Ann Intern Med 109:18–24Google Scholar
  16. 16.
    Fukubayashi T, Kurosawa H (1980) The contact area and pressure distribution pattern of the knee. Acta Orthop Scand 51:871–879Google Scholar
  17. 17.
    Gollehon DL, Torzilli PA, Warren RF (1987) The role of the postero-lateral and cruciate ligaments in the stability of the human knee. J Bone Joint Surg [Am] 69:233–242Google Scholar
  18. 18.
    Green JP (1966) Osteochondritis dissecans of the knee. J Bone Joint Surg [Br] 48:82–91Google Scholar
  19. 19.
    Green WT, Banks HH (1952) Osteochondritis dissecans in children. J Bone Joint Surg [Am] 35:26–47Google Scholar
  20. 20.
    Grood ES, Noyes FR, Butler DL, Suntay WJ (1981) Ligamentous and capsular restraints preventing straight medial and lateral laxity in intact human cadaver knees. J Bone Joint Surg [Am] 63:1257–1269Google Scholar
  21. 21.
    Harrington JJ (1976) A bioengineering analysis of force actions at the knee in normal and pathologic gait. Biomed Eng 11:167–172Google Scholar
  22. 22.
    Harrington JJ (1983) Static and dynamic loading patterns in knee joints with deformities. J Bone Joint Surg [Am] 65:247–259Google Scholar
  23. 23.
    Hehne HJ, Riede UN, Hauschild G, Schlageter M (1981) Tibiofemorale Kontaktflächenmessungen nach experimentellen partiellen und subtotalen Meniskektomien. Z Orthop 199:54–59Google Scholar
  24. 24.
    Hille E, Castro WHH (1990) Experimentelle Untersuchungen der Druck- und Kontaktflächenverteilung im Kniegelenk vor und nach Varisierungs- Bowie Valgisierungsosteotomie des Tibiakopfes. Orthop Praxis 26:712–716Google Scholar
  25. 25.
    Hille E, Schulitz KP, Perzborn V (1984) Die Druck- und Kontaktverläufe des oberen Sprunggelenkes unter verschiedenen Funktionen. In: Hackenbroch MH, Refior HJ, Jäger M, Plitz W (eds) Funktionelle Anatomic und Pathomechanik des Sprunggelenks. Thieme, Stuttgart, pp 52–57Google Scholar
  26. 26.
    Hille E, Schulitz KP, Henrichs C, Schneider T (1985) Pressure and contact surface measurements within the femoropatellar joint and their variations following lateral release. Arch Orthop Trauma Surg 104:275–282Google Scholar
  27. 27.
    Howell DS (1986) Pathogenesis of osteoarthritis. Am J Med 80 (Suppl 4B):24–28Google Scholar
  28. 28.
    Huberti HH, Hayes WC (1984) Patellofemoral contact pressures. J Bone Joint Surg [Am] 66:715–724Google Scholar
  29. 29.
    Jayson MIV, Dixon ASJ (1970) Intra-articular pressure in rheumatoid arthritis of the knee. Am Rheum Dis 29:261–265Google Scholar
  30. 30.
    Johnson F, Leitl S, Waugh W (1980) The distribution of load across the knee. J Bone Joint Surg [Br] 62:346–349Google Scholar
  31. 31.
    Johnson RG (1986) Transection of the canine cruciate ligament: a concise review of experience with this model of degenerative joint disease. Exp Pathol 30:209–213Google Scholar
  32. 32.
    Kettelkamp DB, Chao EY (1972) A method for quantitative analysis of medial and lateral compression forces at the knee during standing. Clin Orthop 83:202–231Google Scholar
  33. 33.
    Kettelkamp DB, Jacobs AW (1972) Tibiofemoral contact area: determination and implication. J Bone Joint Surg [Am] 54:349–356Google Scholar
  34. 34.
    Lane NE, Bloch DA, Jones HH, Mashall WH, Wood PD, Fries JF (1986) Long-distance running, bone density, and osteoarthritis. J AMA 255:1147–1151Google Scholar
  35. 35.
    Linden B (1977) Osteochondritis dissecans of the femoral condyles. J Bone Joint Surg [Am] 59:769–776Google Scholar
  36. 36.
    Lindenberg HL, Montgomery F (1985) Heavy labor and the occurence of gonarthrosis. Clin Orthop 212:235–236Google Scholar
  37. 37.
    Lowe PJ, Saunders GAB (1975) Knee analysis: an objective method evaluating mediolateral stability in the knee. Med Biol Eng Comp 15:548–552Google Scholar
  38. 38.
    Lucht U, Kjurhuus JC, Soerensen S, Bünger C, Sneppen O (1981) The relationship between increasing intraarticular pressures and intraosseous pressures in the juxtaarticular bones.Acta Orthop Scand 52:491–495Google Scholar
  39. 39.
    Lukoschek M, Boyd RD, Schaffler MB, Burr DB, Radin EL (1986) Comparison of joint degeneration models. Acta Orthop Scand 57:349–353Google Scholar
  40. 40.
    Maquet PGJ (1984) Biomechanics of the knee. With application to the pathogenesis and the surgical treatment of osteoarthritris. Springer, Berlin Heidelberg New YorkGoogle Scholar
  41. 41.
    Martin LM, Bourne RB, Rorabeck CH (1988) Stress factures associated with osteoarthritis of the knee. J Bone Joint Surg [Am] 70:771–774Google Scholar
  42. 42.
    McKellop HA, Sigholm G, Redfern FC, Doyle B, Luck JV (1991) The effect of simulated fracture-angulations of the tibia on cartilage pressures in the knee joint. J Bone Joint Surg [Am] 73:1382–1391Google Scholar
  43. 43.
    Morrison JB (1968) Bioengineering analysis of force actions transmitted by the knee joint. Biomech Eng 3:164–170Google Scholar
  44. 44.
    Morrison JB (1969) Function of the knee joint in various activities. Biomed Eng 4:573–580Google Scholar
  45. 45.
    Morrison JB (1970) The mechanics of the knee joint in relation to normal walking. J Biomech 3:51–61Google Scholar
  46. 46.
    Morrison JB (1970) Bioengineering analysis of force actions transmitted by the knee joint. Biomech Eng 3:164–170Google Scholar
  47. 47.
    Mubarak SJ, Carroll NC (1981) Juvenile osteochondritis dissecans of the knee: etiology. Clin Orthop 157:200–211Google Scholar
  48. 48.
    Myers DB, Palmer DG (1972) Capsular compliance and pressure volume relationship in normal and arthritic knees. J Bone Joint Surg [Br] 54:710–716Google Scholar
  49. 49.
    Nelson BH, Anderson DD, Brand RA, Brown TD (1986) Effect of osteochondral defects on articular cartilage. Acta Orthop Scand 59:574–579Google Scholar
  50. 50.
    Noyes FR, Schipplein OD, Andriacchi TP, Saddemi SR, Weise M (1992) The anterior cruciate ligament-deficient knee with varus alignment. An analysis of gait adaptations and dynamic joint loadings. Am J Sports Med 209:707–716Google Scholar
  51. 51.
    Olmstead TG, Wevers HW, Bryant JT, Gouw GJ (1986) Effect of muscular activity on valgus/varus laxity and stiffness of the knee. J Biomech 19:565–577Google Scholar
  52. 52.
    Paar O, Lippert MJ, Bernett P (1986) Patellofemorale Druckund Kontaktflächenmessungen. Unfallchirurg 89:555–562Google Scholar
  53. 53.
    Pope MH, Johnson RJ, Brown DW, Tighe C (1979) The role of the musculature in injuries to the madial collateral ligament. J Bone Joint Surg [Am] 61:398–402Google Scholar
  54. 54.
    Prodromos CC, Andriacchi TP, Galante JO (1985) A relationship between gait and clinical changes following high tibial ostotomy. J Bone Joint Surg [Am] 67:1188–1194Google Scholar
  55. 55.
    Radin EL, Paul IL, Lowy M (1970) A comparison of the dynamic force transmitting properties of subchondral bone and articular cartilage. J Bone Joint Surg [Am] 52:444–456Google Scholar
  56. 56.
    Radin EL, Paul IL, Rose RM (1972) Role of mechanical factors in pathogenesis of primary osteoarthritis. Lancet 1:519–522Google Scholar
  57. 57.
    Radin EL, Parker HG, Pugh JW (1973) Response of joints to impact loading III. J Biomech 6:51–57Google Scholar
  58. 58.
    Radin EL, Martin RB, Burr DB, Caterson B, Boyd RD, Goodwin C (1984) Effects of mechanical loading on the tissues of rabbit knee. J Orthop Res 2:221–234Google Scholar
  59. 59.
    Reimann I (1973) Experimental osteoarthritis of the knee in rabbits induced by alteration of the load-bearing. Acta Orthop Scand 44:496–504Google Scholar
  60. 60.
    Schipplein OK, Andriacchi TP (1991) Interaction between active and passive knee stabilizers during level walking. J Orthop Res 9:113–119Google Scholar
  61. 61.
    Sherman MF, Russell FW, Mashall JL, Savatsky GJ (1988) A clinical and radiographical analysis of 127 anterior cruciate insufficient knees. Clin Orthop 227:229–237Google Scholar
  62. 62.
    62.Simon SR, Radin EL, Paul IL, Rose RM (1972) The response of joints to impact loading II. J Biomech 5:267–272Google Scholar
  63. 63.
    Tarr RR, Resnik CT, Wagner KS, Sarmiento A (1985) Changes in tibio-talar joint contact areas following experimental induced tibial angular deformities. Clin Orthop 199:72–80Google Scholar
  64. 64.
    Tobin WJ (1957) Familial osteochondritis dissecans with associated tibia vara. J Bone Joint Surg [Am] 39:1094–1105Google Scholar
  65. 65.
    Vegter J (1987) The influence of joint posture on intraarticular pressure. J Bone Joint Surg [Br] 69:71–74Google Scholar
  66. 66.
    Walker PS, Erkman MJ (1975) The role of the menisci in force transmission across the knee. Clin Orthop 109:184–192Google Scholar
  67. 67.
    Walker PS, Hajek JV (1972) The load-bearing area in the knee joint. J Biomech 5:581–589Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • J. Bruns
    • 1
  • M. Volkmer
    • 1
  • S. Luessenhop
    • 1
  1. 1.Department of Orthopaedic SurgeryUniversity of HamburgHamburgGermany

Personalised recommendations