Naturwissenschaften

, Volume 65, Issue 2, pp 85–95 | Cite as

Microbial catabolism, the carbon cycle and environmental pollution

  • Stanley Dagley
Article

Abstract

The establishment of a carbon cycle was a necessary prerequisite for the evolution of higher forms of life. This could not have been achieved without the direct participation of oxygen gas in certain metabolic reactions. The controlled activation of oxygen is catalyzed by microbial oxygenases; in principle, activated oxygen is hazardous to all living forms but without it, the degradative segment of the carbon cycle could not operate. The degradation of aromatic compounds is not an esoteric activity of a few specialized microorganisms. It occurs continuously, accompanied by fixation and cycling of oxygen on a massive scale; but like other global biochemical processes it tends to be neglected in general biological curricula. However, knowledge of the scope and limitations of microbial catabolic enzymes is central to the development of rational approaches to many of society's environmental concerns.

Keywords

Oxygen Enzyme Environmental Pollution Control Activation Aromatic Compound 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Massey, V., et al.: J. Biol. Chem. 244, 3999 (1969)Google Scholar
  2. 2.
    Taniguchi, T., Hirata, F., Hayaishi, O.: ibid. 252, 2774 (1977)Google Scholar
  3. 3.
    Knowles, R.F., et al.: Biochem. J. 111, 53 (1969)Google Scholar
  4. 4.
    McCord, J.M., Keele, B.B., Fridovich, I.: Proc. Nat. Acad. Sci. USA 68, 1024 (1971)Google Scholar
  5. 5.
    Fridovich, I.: Horizons Biochem. Biophys. 1, 1 (1974)Google Scholar
  6. 6.
    Bolin, B.: Chemistry in the Environment, p. 53. San Francisco: Freeman 1973Google Scholar
  7. 7.
    Hayaishi, O.: Molecular Mechanisms of Oxygen Activation. New York: Academic Press 1974Google Scholar
  8. 8.
    Hayaishi, O.: Bacteriol. Rev. 30, 720 (1966)Google Scholar
  9. 9.
    Reiner, A.M., Hegeman, G.D.: Biochemistry 10, 2530 (1971)Google Scholar
  10. 10.
    Chapman, P.J., Dagley, S.: J. Gen. Microbiol. 28, 251 (1962)Google Scholar
  11. 11.
    Sparnins, V.L., Chapman, P.J.: J. Bacteriol. 127, 362 (1976)Google Scholar
  12. 12.
    Patel, R.N., et al: ibid. 127, 536 (1976)Google Scholar
  13. 13.
    Nakazawa, A., Kojima, Y., Taniuchi, H.: Biochim. Biophys. Acta 147, 189 (1967)Google Scholar
  14. 14.
    Fujiwara, M., et al.: J. Biol. Chem. 250, 4848 (1975)Google Scholar
  15. 15.
    Dagley, S.: Advanc. Microbiol. Physiol. 6, 1 (1971)Google Scholar
  16. 16.
    Dagley, S.: Essays Biochem. 11, 81 (1975)Google Scholar
  17. 17.
    Hartline, R.A., Gunsalus, I.C.: J. Bacteriol. 106, 468 (1971)Google Scholar
  18. 18.
    Gunsalus, I.C.: Degradation of Synthetic Organic Molecules in the Biosphere, p. 137. Washington, D.C.: Printing and Publishing Office, Nat. Acad. Sci. 1972Google Scholar
  19. 19.
    Cardini, G., Jurtshuk, P.: J. Biol. Chem. 245, 2789 (1970)Google Scholar
  20. 20.
    Sparnins, V.L., Dagley, S.: J. Bacteriol. 124, 1374 (1975)Google Scholar
  21. 21.
    Hareland, W.A., et al.: ibid. 121, 272 (1975)Google Scholar
  22. 22.
    Griffin, M., Trudgill, P.W.: Eur. J. Biochem. 63, 199 (1976)Google Scholar
  23. 23.
    Donoghue, N.A., Norris, D.B., Trudgill, P.W.: ibid. 63, 175 (1976)Google Scholar
  24. 24.
    Trudgill, P.W., DuBus, R., Gunsalus, I.C.: J. Biol. Chem. 241, 4288 (1966)Google Scholar
  25. 25.
    Yu, C.-A., Gunsalus, I.C.: ibid. 244, 6149 (1969)Google Scholar
  26. 26.
    Cripps, R.E.: Biochem. J. 152, 233 (1975)Google Scholar
  27. 27.
    Britton, L.N., Brand, J.M., Markovetz, A.J.: Biochim. Biophys. Acta 369, 45 (1974)Google Scholar
  28. 28.
    Ribbons, D.W.: FEBS Lett. 12, 161 (1971)Google Scholar
  29. 29.
    Bernhardt, F.-H., Staudinger, H., Ullrich, V.: Z. Physiol. Chem. 351, 467 (1970)Google Scholar
  30. 30.
    Tack, B.F., Chapman, P.J., Dagley, S.: J. Biol. Chem. 247, 6438 (1972)Google Scholar
  31. 31.
    Tack, B.F., Chapman, P.J., Dagley, S.: ibid. 247, 6444 (1972)Google Scholar
  32. 32.
    Chapman, P.J.: Abstr. Ann. Meeting Amer. Soc. Microbiol., p. 276 (1977)Google Scholar
  33. 33.
    Dagley, S., Patel, M.D.: Biochem. J. 66, 227 (1957)Google Scholar
  34. 34.
    Bayly, R.C., Dagley, S., Gibson, D.T.: ibid. 101, 293 (1966)Google Scholar
  35. 35.
    Hopper, D.J., Chapman, P.J.: ibid. 122, 19 (1971)Google Scholar
  36. 36.
    Hopper, D.J., Chapman, P.J., Dagley, S.: ibid. 122, 29 (1971)Google Scholar
  37. 37.
    Blumer, M.: Science 134, 474 (1961)Google Scholar
  38. 38.
    Gibson, D.T.: Degradation of Synthetic Organic Molecules in the Biosphere, p. 116. Washington, D.C.: Printing and Publishing Office, Nat. Acad. Sci. 1972Google Scholar
  39. 39.
    Gibson, D.T., et al.: Biochemistry 9, 1631 (1970)Google Scholar
  40. 40.
    Gibson, D.T., et al.: ibid. 9, 1626 (1970)Google Scholar
  41. 41.
    Kobal, V., et al.: J. Amer. Chem. Soc. 95, 4420 (1973)Google Scholar
  42. 42.
    Ziffer, H., et al.: ibid. 95, 4048 (1973)Google Scholar
  43. 43.
    Evans, W.C., Fernley, H.N., Griffiths, E.: Biochem. J. 95, 819 (1965)Google Scholar
  44. 44.
    Dagley, S.: Amer. Scientist 63, 681 (1975)Google Scholar
  45. 45.
    U.S. Environmental Protection Agency: Interagency Energy/Environment R and D Program — Status Report III. Springfield, Va., U.S.A.: National Technical Information Service 1977Google Scholar
  46. 46.
    Clarke, D.D., Nicklas, W.J., Palumbo, J.: Arch. Biochem. Biophys. 123, 205 (1968)Google Scholar
  47. 47.
    Teipel, J.W., Hass, G.M., Hill, R.L.: J. Biol. Chem. 243, 5684 (1968)Google Scholar
  48. 48.
    Siuda, J.F., DeBernardis, J.F.: Lloydia 36, 107 (1973)Google Scholar
  49. 49.
    Wood, J.M., Kennedy, F.S., Rosen, C.G.: Nature 220, 173 (1968)Google Scholar
  50. 50.
    Bartha, R., Pramer, D.: Science 156, 1617 (1967)Google Scholar
  51. 51.
    Bartha, R., Linke, H.A.B., Pramer, D.: ibid. 161, 582 (1968)Google Scholar
  52. 52.
    Kaufman, D.D., Plimmer, J.R., Klingebiel, U.I.: J. Agric. Food Chem. 21, 127 (1973)Google Scholar
  53. 53.
    Lominski, I., et al.: Nature 160, 573 (1947)Google Scholar
  54. 54.
    Vaughn, R.H., et al.: J. Bacteriol. 60, 119 (1950)Google Scholar
  55. 55.
    Dagley, S.: J. Gen. Microbiol. 11, 218 (1954)Google Scholar
  56. 56.
    Leadbetter, E.R., Foster, J.W.: Arch. Biochem. Biophys. 82, 491 (1959)Google Scholar
  57. 57.
    Kirk, T.K., Connors, W.J., Zeikus, J.G.: Appl. Environ. Microbiol. 32, 192 (1976)Google Scholar
  58. 58.
    Horvath, R.S., Alexander, M.: Can. J. Microbiol. 16, 1131 (1970)Google Scholar
  59. 59.
    Focht, D.D., Joseph, A.H.: ibid. 12, 1553 (1971)Google Scholar
  60. 60.
    Firestone, M.K., Tiedje, J.M.: Appl. Microbiol. 29, 758 (1975)Google Scholar
  61. 61.
    Peterson, D., Llanexa, J.: Arch. Biochem. Biophys. 162, 135 (1974)Google Scholar
  62. 62.
    Viccaro, J.P., Ambye, E.L.: J. Amer. Oil Chem. Soc. 54, 41 (1977)Google Scholar
  63. 63.
    Blumer, M.: Sci. Amer. 234 (3), 34 (1976)Google Scholar

Copyright information

© Springer-Verlag 1978

Authors and Affiliations

  • Stanley Dagley
    • 1
  1. 1.Department of Biochemistry, College of Biological SciencesUniversity of MinnesotaSt. PaulUSA

Personalised recommendations