Mycopathologia

, Volume 92, Issue 3, pp 129–139 | Cite as

Aflatoxin formation and the dual phenomenon in Aspergillus flavus link

  • Gunnel Clevström
  • Hans Ljunggren
Article

Abstract

Trials were performed with three aflatoxin-forming isolates of Aspergillus flavus from formic acid-treated materials containing aflatoxin, one A. flavus strain isolated from mouldy barley kept for two months in an anaerobic jar and one non-toxic A. flavus strain from the culture collection at our Department. The nontoxic strain and one aflatoxin producer were cultured in salts-sugar-asparagine substrate (SLM) for aflatoxin production and in a specially prepared grass substrate (GS). Formic acid and ammonium formate were added to both substrates, and sucrose in a low amount was added to the grass substrate. The aflatoxin-forming isolate segregated on the grass substrate into two different lines, one with high aflatoxin production and one with very low aflatoxin-forming ability, higher growth rate and reduced sporulation, on the SLM substrate. When exposed to sucrose in grass substrate and ammonium formate in SLM, one toxic and one non-toxic strain were provoked to increased aflatoxin formation. The A. flavus isolate from the anaerobic jar also segregated on the grass substrate, and these segregants were more sensitive to a high dose of formic acid. In these A. flavus strains there seems to be a continuous variation between different lines, depending on cultivation conditions. In the two aflatoxin-forming isolates left, such segregation tendencies were not very marked on any substrate.

Keywords

Sucrose Formic Acid Aspergillus Aflatoxin Culture Collection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdollahi, A. & R. L. Buchanan, 1981. Regulation of aflatoxin biosynthesis: characterization of glucose as an apparent inducer of aflatoxin. J. Food Sci. 46: 143–146.Google Scholar
  2. 2.
    Barham, H. N. & B. L. Smits, 1934. Köjic acid — a review. Trans. Kansas Acad. Sci. 32: 91–99.Google Scholar
  3. 3.
    Basappa, S. C., V. Sreenivasamurthy & H. A. B. Parpia, 1970. Aflatoxin and kojic acid production by resting cells of Aspergillus flavus Link. J. Gen. Microbiol. 61: 81–86.Google Scholar
  4. 4.
    Bentley, R., 1957. Preparation and analysis of kojic acid. Methods in Enzymology 3: 238–241.Google Scholar
  5. 5.
    Bhatnagar, R. K., S. Ahmad, K. G. Mukerji & T. A. Venkitasubramanian, 1982. Role of blastospores in protecting Aspergillus parasiticus NRRL 3240 from high levels of aflatoxins. Appl. Environm. Microbiol. 44: 579–582.Google Scholar
  6. 6.
    Bjeldanes, L. F., G. W. Chang & S. V. Thompson, 1978. Detection of mutagens produced by fungi with the Salmonella thyphimurium assay. Appl. Environm. Microbiol. 35: 1150–1154.Google Scholar
  7. 7.
    Bothast, R. J. & C. W. Hesseltine, 1975. Bright greenish-yellow fluorescence and aflatoxin in agricultural commodities. Appl. Environm. Microbiol. 30: 337–338.Google Scholar
  8. 8.
    Burroughs, R. M., L. M. Seiz, D. B. Sauer & H. E. Mohr, 1976. Effect of substrate on metabolite production of Alternaria alternata. Appl. Environm. Microbiol. 31: 685–690.Google Scholar
  9. 9.
    Clevström, G., B. Göransson, R. Hlödversson & H. Pettersson, 1981. Aflatoxin formation in hay treated with formic acid and in isolated strains of Aspergillus flavus. J. Stored Prod. Res. 17: 151–161.Google Scholar
  10. 10.
    Clevström, G. & H. Ljunggren, 1984. Occurrence of storage fungi, especially aflatoxin-forming Aspergillus flavus in soil, greenstuff and prepared hay. J. Stored Prod. Res. 20: 71–82.Google Scholar
  11. 11.
    Clevström, G., H. Ljunggren, S. Tegelström & K. Tideman, 1983. Production of aflatoxin in an isolate of Aspergillus flavus cultured under a limited oxygen supply. Appl. Environm. Microbiol. 46: 400–405.Google Scholar
  12. 12.
    Cole, R. J., 1976. Aspergillus toxins other than mycotoxins and other fungal related food problems. In J. V. Rodericks (ed.), Advances in Chemistry Series 149.Google Scholar
  13. 13.
    Davis, N. D., U. L. Diener & V. P. Agnihotri, 1967. Production of aflatoxins B1 and G1 in chemically defined medium. Mycopathol. Mycol. Appl. 31: 251–256.Google Scholar
  14. 14.
    Foster, J. W., 1949. Chemical activities of fungi. Academic Press Inc., Publishers, New York.Google Scholar
  15. 15.
    Hansen, H. N., 1938. The dual phenomenon in imperfect fungi. Mycologia 30: 442–455.Google Scholar
  16. 16.
    Heathcote, J. G., J. J. Child & M. F. Dutton, 1965. The possible role of kojic acid in the production of aflatoxin by Aspergillus flavus. Biochem. J. 95: 23.Google Scholar
  17. 17.
    Holmberg, A. T., R. Grossman, N. G. Nilsson, H. Pettersson & B. Göransson, 1983. A case of aflatoxicosis in fattening calves caused by aflatoxin formation in inadequate formic acid treated grain. Zbl. Vet. Med. A. 30: 656–663.Google Scholar
  18. 18.
    Häggblom, P., 1981. Production of alternariol and alternariol monomethyl ether and morphology of Alternaria alternata. Trans. Brit. Mycol. Soc. 77: 185–187.Google Scholar
  19. 19.
    Iida, W., 1975. On the tolerance of plant pathogenic fungi and bacteria to fungicides in Japan. Japan Pesticide Inf. 23: 13–16.Google Scholar
  20. 20.
    Ishitani, C. & K.-I. Sakaguchi, 1956. Hereditary variation and recombination in koji-molds (Aspergillus oryzae and Aspergillus sojae). V. Heterocaryosis. J. Gen. Appl. Microbiol. 2: 345–400.Google Scholar
  21. 21.
    Jacquet, J. & A. Tantaoui-Elaraki, 1977. Sur la notion du pouvoir toxigène des souches d'Aspergillus du groupe flavus. Ann. Nutrit. L'Aliment. 31: 563–574.Google Scholar
  22. 22.
    Jinks, J. L., 1959. The genetic basis of ‘dualty’ in imperfect fungi. Heredity 13: 525–528.Google Scholar
  23. 23.
    Katan, T., 1982. Resistance to 3,5-dichlorophenyl-N-cyclic imide (‘dicarboximide’) fungicides in the grey mold pathogen Botrytia cinerea on protected crops. Pl. Path. 31: 133–141.Google Scholar
  24. 24.
    Kluyver, A. J. & L. H. C. Perquin, 1933. Uber die Bedingungen der Kojicsäurebildung durch Aspergillus flavus Link. Biochem. Zschr. 266: 82–95.Google Scholar
  25. 25.
    Knypl. J. S., 1963. A fungistatic action of coumarin. Nature 200: 433–434.Google Scholar
  26. 26.
    Lilly, L. J., 1965. Induction of chromosome aberrations by aflatoxin. Nature 207: 433–434.Google Scholar
  27. 27.
    Lyon, G. D., 1978. The occurrence of benomyl tolerance in Penicillium spp., Botrytis cinerea and Gliocladium sp. on virus-tested narcissus twin-scales. Ann. Appl. Biol. 88: 45–49.Google Scholar
  28. 28.
    Masimango, N., J. L. Ramaut & J. Remcle, 1977. Production de l'aflatoxine b1 in vitro en fonction de diverses conditions de culture. Ann. Nutrit. L'Aliment. 31: 583–605.Google Scholar
  29. 29.
    Masimango, N., J. L. Ramaut & J. Remaele, 1978. Contribution à l'étude du rôle des aditifs chimiques dans la lutte contre l'aflatoxine. Rev. Ferment. Ind. Aliment. 33: 116–123.Google Scholar
  30. 30.
    May, O. E., A. J. Mayer, P. A. Wells & H. T. Herrick, 1931. The production of kojic acid by Aspergillus flavus. J. Am. Chem. Soc. 53: 774–782.Google Scholar
  31. 31.
    Mayer, V. W. & M. S. Legator, 1969. Production of petite mutants in Saccharomyces cerevisiae by patulin. J. Agr. Food Chem. 17: 454–456.Google Scholar
  32. 32.
    Mayne, R. Y., J. W. Bennett & J. Tallant, 1971. Instability of an aflatoxin-producing strain of Aspergillus parasiticus. Mycologia 63: 644–648.Google Scholar
  33. 33.
    Nandi, B. & P. Häggblom, 1984. Production of aflatoxin in rough rice under different storage conditions. Acta Agr. Scand. 34: 128–132.Google Scholar
  34. 34.
    Papa, K. E., 1973. The parasexual cycle in Aspergillus flavus. Mycologia 65: 1201–1205.Google Scholar
  35. 35.
    Parrish, F. W., B. J. Wiley, E. G. Simmons & L. Long Jr., 1966. Production of aflatoxins and kojic acid by species of Aspergillus and Penicillium. Appl. Microbiol. 14: 139.Google Scholar
  36. 36.
    Pettersson, H., G. Göransson, K.-H. Kiessling, K. Tideman & T. Johansson, 1978. Aflatoxin in a Swedish grain sample. Nord. Vet. Med. 30: 482–485.Google Scholar
  37. 37.
    Pontecorvo, G., J. A. Roper & E. Forbes, 1953. Genetic recombination without sexual reproduction in Aspergillus niger. J. Gen. Microbiol. 8: 198–210.Google Scholar
  38. 38.
    Raper, K. B. & D. I. Fennell, 1965. The genus Aspergillus. Williams & Wilkins, Baltimore.Google Scholar
  39. 39.
    Reddy, T. V., L. Viswanathan & T. A. Venkitasubramanian, 1971. High aflatoxin production on a chemically defined medium. Appl. Microbiol. 22: 293–296.Google Scholar
  40. 40.
    Reiss, J., 1971. Inhibition of fungal sporulation by aflatoxin. Arch. Microbiol. 76: 219–222.Google Scholar
  41. 41.
    Sharma, A., A. G. Behere, S. R. Padval-Desai & G. B. Nadkarni, 1980. Influence of inoculum size of Aspergillus parasiticus spores on aflatoxin production. Appl. Environm. Microbiol. 40: 989–993.Google Scholar
  42. 42.
    Torres, J., J. Guarro, G. Suarez, N. Sune, M. A. Calvo & C. Ramirez, 1980. Morphological changes in strains of Aspergillus flavus Link ex Fries and Aspergillus parasiticus Speare related with aflatoxin production. Mycopathologia 72: 171–174.Google Scholar
  43. 43.
    Werch, S. C., Y. T. Oester & T. E. Friedeman, 1957. Kojic acid; a convulsant. Science 126: 450–451.Google Scholar
  44. 44.
    Waterman, H. J., 1913. Mutation bei Penicillium glaucum und Aspergillus niger. Zschr. Gährungsphys. 3: 1–14.Google Scholar
  45. 45.
    Wicklow, D. T., O. L. Shotwell & G. L. Adams, 1981. Use of aflatoxin-producing ability medium to distinguish aflatoxin-producing strains of Aspergillus flavus. Appl. Environm. Microbiol. 41: 697–699.Google Scholar
  46. 46.
    Wilson, B. J., 1971. Miscellaneous Aspergillus toxins. In: A. Ciegler, S. Kadis & S. J. Ajl (eds), Microbial toxins, Vol. VI, Fungal toxins. Academic Press, New York and London.Google Scholar
  47. 47.
    Yokotsuka, T., M. Sasaki, T. Kikuchi, Y. Asao & A. Nobuhara, 1967. Studies on the compounds produced by molds. I. Fluorescent compounds produced by Japanese industrial molds. Nippon Nogeikagaku Kaishi (J. Agr. Chem. Soc. Japan) 41: 32–38.Google Scholar
  48. 48.
    Yuill, E., 1950. The numbers of nuclei in conidia of Aspergilli. Trans. Brit. Mycol. Soc. 33: 324–331.Google Scholar

Copyright information

© Martinus Nijhoff/Dr W. Junk Publishers 1985

Authors and Affiliations

  • Gunnel Clevström
    • 1
  • Hans Ljunggren
    • 1
  1. 1.Department of MicrobiologySwedish University of Agricultural ScienceUppsalaSweden

Personalised recommendations