, Volume 43, Issue 1, pp 69–74 | Cite as

Detection of the neuroleptic properties of clozapine, sulpiride and thioridazine

  • B. Costall
  • R. J. Naylor
Animal Studies


The cataleptic and antistereotypic abilities of clozapine, sulpiride and thioridazine were determined in the rat and compared with the responses of typical neuroleptic agents, haloperidol, fluphenazine and pimozide. Haloperidol and fluphenazine caused a dose-dependent cataleptic state which attained maximum intensity: the effects of pimozide were also dose-dependent but, although the catalepsy was marked, maximum intensity was not attained. In contrast, thioridazine, clozapine and sulpiride each caused a very weak, but definite, cataleptic response although a dose-dependency could not be demonstrated. Pretreatment of animals with α-methylparatyrosine was shown to significantly potentiate the cataleptic actions of haloperidol, fluphenazine, pimozide, thioridazine and sulpiride but failed to modify the action of clozapine. Threshold cataleptic doses of all agents markedly synergised in the production of catalepsy with threshold doses of the cholinergic drug RS86. Similarly, all “neuroleptic” agents tested were shown to reduce the intensity of the stereotyped behaviour induced by amphetamine, apomorphine and nomifensine in a dose-dependent manner but only haloperidol, fluphenazine and pimozide were shown to be capable of 100% inhibition. The antistereotypic abilities of haloperidol, fluphenazine and pimozide were most marked against amphetamine, but this was not a consistent observation for thioridazine, clozapine and sulpiride. Threshold, or even subthreshold, doses of both the typical and atypical neuroleptic agents combined with threshold doses of RS86 markedly synergised in the antagonism of the Stereotypic actions of amphetamine, apomorphine and nomifensine.

Key words

Clozapine Sulpiride Thioridazine Neuroleptic Catalepsy Stereotyped Behaviour 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andén, N.-E.: Dopamine turnover in the corpus striatum and the limbic system after treatment with neuroleptic and anti-acetylcholine drugs. J. Pharm. Pharmacol. 24, 905–906 (1972)Google Scholar
  2. Angst, J., Bente, D., Berner, P., Heimann, H., Helmchen, H., Hippius, H.: Das klinische Wirkungsbild von Clozapin. Pharmacopsychiat. 4, 201–214 (1971)Google Scholar
  3. Baro, F., Van Lommel, R., Dom, R., De Mesmaecker, L.: Pimozide treatment of chronic schizophrenics as compared with haloperidol and penfluridol maintenance treatment. A multidisciplinary approach. Acta psychiat. belg. 72, 199–214 (1972)Google Scholar
  4. Bartholini, G., Haefely, W., Jalfre, M., Keller, H. H., Pletscher, A.: Effects of clozapine on cerebral catecholaminergic neurone systems. Brit. J. Pharmacol. 46, 736–740 (1972)Google Scholar
  5. Bobon, D. P., Plomteux, G., Heusghem, C., Bobon, J.: Clinical toxicology and efficacy of pimozide. Int. Pharmacopsychiat. 4, 194–203 (1970)Google Scholar
  6. Borenstein, P., Champion, C., Cujo, Ph., Gekiers, P., Olivenstein, C., Kramarz, P.: An original psychotropic drug: sulpiride. Sem. HÔp. Paris 19, 1301–1314 (1969)Google Scholar
  7. Burki, H. R., Ruch, W., Asper, H., Baggiolini, Stille, G.: Effect of single and repeated administration of clozapine on the metabolism of dopamine and noradrenaline in the brain of the rat. Europ. J. Pharmacol. 27, 180–190 (1974)Google Scholar
  8. Caille, P.: Preliminary clinical experience with sulpiride. Nord. psykiat. T. 25, 340–346 (1971)Google Scholar
  9. Costall, B., Naylor, R. J.: Neuroleptic and non-neuroleptic catalepsy. Arzneimittel-Forsch. 23, 674–683 (1973a)Google Scholar
  10. Costall, B., Naylor, R. J.: Is there a relationship between the involvement of extrapyramidal and mesolimbic brain areas with the cataleptic action of neuroleptic agents and their clinical antipsychotic effect? Psychopharmacologia (Berl.) 32, 161–170 (1973b)Google Scholar
  11. Costall, B., Naylor, R. J.: Stereotyped and circling behaviour induced by dopaminergic agonists after lesions of the midbrain raphé nuclei. Europ. J. Pharmacol. 29, 206–222 (1974a)Google Scholar
  12. Costall, B., Naylor, R. J.: Mesolimbic involvement with behavioural effects indicating antipsychotic activity. Europ. J. Pharmacol. 27, 46–58 (1974b)Google Scholar
  13. Costall, B., Kelly, D. M., Naylor, R. J.: Nomifensine: A potent dopaminergic agonist of antiparkinson potential. Psychopharmacologia (Berl.) (in press 1975)Google Scholar
  14. De Maio, D.: Preliminary clinical evaluation of a new neuroleptic agent: HF 1854 in: The present status of psychotropic drugs, A. Cerletti and F. J. Bové, eds., pp. 485–488. Amsterdam: Excerpta Medica Foundation 1969Google Scholar
  15. Dorris, R. L., Shore, P. A.: Actions of clozapine on the dopamine neuron. Fed. Proc. 33, 511 (1974)Google Scholar
  16. Goldman, D.: Parkinsonism and related phenomena from administration of drugs: their production and control under clinical conditions and possible relation to therapeutic effect. In: Extrapyramidal system and neuroleptics. J.-M. Bordeleau, ed., pp. 453–464. Editions psychiatriques, Montreal 1961Google Scholar
  17. Haase, H. J., Floru, L., Ulrich, F.: Clinical neuroleptic investigation of N-[(1-ethyl-pyrrolidine-2-yl)-methyl]-2-methoxy-5-sulfamoyl benzamide the neuroleptic sulpiride (Dogmatil) using acute schizophrenics. Int. Pharmacopsychiat. 9, 77–94 (1974)Google Scholar
  18. Hornykiewicz, O.: Parkinsons disease: from brain homogenate to treatment. Fed. Proc. 32, 183–190 (1973)Google Scholar
  19. Janssen, P. A. J., Niemegeers, J. E., Schellekens, K. H. L., Lenaerts, F. M.: Is it possible to predict the clinical effects of neuroleptic drugs (major tranquillizers) from animal data. Arzneimittel-Forsch. 17, 841–854 (1967)Google Scholar
  20. Laville, Cl., Margarit, J.: Influence of sulpiride on motor activity and vigilance in the mouse. Path. et Biol. 16, 663–665 (1968)Google Scholar
  21. Loew, D. M.: The prediction of sedative potency of neuroleptics. In: Modern problems of pharmacopsychiatry, vol. 5, D. P. Bobon, P. A. J. Janssen, and J. Bobon, eds., pp. 47–50. Basel: Karger 1970Google Scholar
  22. Miller, R. J., Hiley, C. R.: Anti-muscarinic properties of neuroleptics and drug induced Parkinsonism. Nature (Lond.) 248, 596–597 (1974)Google Scholar
  23. Miller, R. J., Horn, A. S., Iversen, L. L.: The action of neuroleptic drugs on dopamine-stimulated adenosine cyclic 3′,5′-monophosphate productions in rat neostriatum and limbic forebrain. Molec. Pharmacol. 10, 759–766 (1974)Google Scholar
  24. Muller, P., Seeman, P.: Neuroleptics: relation between cataleptic and anti-turning actions, and role of the cholinergic system. J. Pharm. Pharmacol. 26, 981–984 (1974)Google Scholar
  25. Sayers, A. C., Kleinlogel, H.: Neuropharmakologische Befunde unter chronischer Verabreichung von Haloperidol, Loxapine und Clozapin. Arzneimittel-Forsch. 24, 981–982 (1974)Google Scholar
  26. Snyder, S., Greenberg, D., Yamamura, H. I.: Antischizophrenic drugs and brain cholinergic receptors. Arch. gen. Psychiat. 31, 58–61 (1974)Google Scholar
  27. Stille, G., Lauener, H., Eichenberger, E.: The pharmacology of 8-chloro-11-(4-methyl-1-piperazinyl)-5H-dibenzo (b,e) (1,4) diazepine (clozapine). Farmaco, Ed. Sci. 26, 603–625 (1971)Google Scholar
  28. Vinar, O., Kršiak, M.: Prediction of Neuroleptic effects from animal data. In: Phenothiazines and structurally related drugs, I. S. Forrest, C. J. Carr, and E. Usdin, eds., pp. 675–683. New York: Raven Press 1974Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • B. Costall
    • 1
  • R. J. Naylor
    • 1
  1. 1.Postgraduate School of Studies in PharmacologyUniversity of BradfordBradfordEngland

Personalised recommendations