Mycopathologia

, Volume 108, Issue 1, pp 37–46 | Cite as

Electron microscopy of Microsporum cookei after ‘in vitro’ treatment with protoanemonin: A combined SEM and TEM study

  • Donatella Mares
Article

Abstract

The ranunculaceous derivative protoanemonin (PrA) was studied as an antifungal agent on the dermatophyte Microsporum cookei. The ultrastructural changes that PrA brought about in this fungus were observed with both the transmission and scanning electron microscopes. The main anomalies noted were abnormally shaped hyphae and within the cytoplasm, multimembranous bodies which were irregular in shape and size, and tubules of 25 and 60 nm in diameters. Mitochondria, nuclei and vacuoles were also variously affected by PrA. Although multifarious, the observed cellular alterations in M. cookei can be considered the result of a PrA interaction with cytoplasmic microtubules. Since these cell structures contain a great number of ASH groups, our previous hypothesis, that sulphydryl groups are the primary targets of this molecule, appears to be supported.

Key words

Protoanemonin Microsporum cookei ultrastructural changes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Asahina Y & Fujta A. Synthesis and constitution of anemonin. J Pharm Soc Japan 1920; 455: 1–4.Google Scholar
  2. 2.
    Beckett A, Heath IB & McLaughlin DJ. An atlas of fungal ultrastructure. Longman, 1974, London.Google Scholar
  3. 3.
    Bonora A, Dall'Olio G & Bruni A. Separation and quantitation of protoanemonin in Ranunculaceae by normal- and reversed-phase HPLC. Planta Med 1985; 364–367.Google Scholar
  4. 4.
    Bygrave FL. Mitochondria and the control of intracellular calcium. Biol Rev 1978; 53: 43–79.Google Scholar
  5. 5.
    Caltrider PG. Protoanemonin. In Antibiotics. Mechanism of action (JW Corcoran & F Hahn, Eds.), Vol. 1, pp. 671–673. Springer-Verlag, Berlin/Heidelberg/New York. 1967.Google Scholar
  6. 6.
    Cappuccinelli P, Rubino S, Fighetti M & Unger E. Organization of the microtubular system in Dyctiostelium amoebae. In Microtubules in microorganisms (P Cappuccinelli & NR Morris, Eds.), pp. 71–98. M Dekker Inc., New York/Basel. 1982.Google Scholar
  7. 7.
    Cavallito CJ & Haskell TH. The mechanism of action of antibiotics. The reaction of unsaturated lactones with cysteine and related compounds. J Am Chem Soc 1945; 67: 1991–1994.Google Scholar
  8. 8.
    Courtoy R & Simar LJ. Importance of controls for the demonstration of carbohydrates in electron microscopy with the silver methenamine or the thiocarbohydrazidesilver proteinate methods. J Microsc 1974; 100: 199–211.Google Scholar
  9. 9.
    Dall'Olio G & Vannini GL. Coumarin-induced disturbances of morphological development and cell wall formation in Trichophyton mentagrophytes. Cytobiologie 1979; 18: 390–397.Google Scholar
  10. 10.
    Drochmans P. Morphologie du glycogène. Étude au microscope électronique de colorations négatives du glycogène particulaire. J Ultrastruct Res 1962; 6: 141–163.Google Scholar
  11. 11.
    Dustin P. Microtubules. Springer-Verlag, Berlin/Heidelberg/New York. 1978.Google Scholar
  12. 12.
    Erickson RO. Protoanemonin as a mitotic inhibitor. Science 1948; 108: 533.Google Scholar
  13. 13.
    Erickson RO & Rosen GU. Cytological effects of protoanemonin of the root tip Zea mays. Am J Bot 1949; 36: 317–322.Google Scholar
  14. 14.
    Gull K & Trinci APJ. Ultrastructural effects of griseofulvin on the myxomycete Physarum polycephalum. Inhibition of mitosis and production of microtubule crystals. Protoplasma 1974; 81: 37–48.Google Scholar
  15. 15.
    Hall IH, Lee KH, Starnes CO, Muraoka O, Sumida Y & Waddell TG. Antihyperlipidemic activity of sesquiterpene lactones & related compounds. J Pharm Sci 1980; 69: 694–696.Google Scholar
  16. 16.
    Heath B. The effect of antimicrotubule agents on the growth and ultrastructure of the fungus Saprolegnia ferax and their ineffectiveness in disrupting hyphal microtubules. Protoplasma 1975; 85: 147–176.Google Scholar
  17. 17.
    Hebert CD, Steffens WL & Wille JJ. The role of spindle microtubule assembly in the control of mitotic timing in Physarum. Induction of a novel type of tubular structure by griseofulvin treatment. Exp Cell Res 1980; 126: 1–13.Google Scholar
  18. 18.
    Howard RJ. Ultrastructural analysis of hyphal tip cell growth in fungi: Spitzenkörper, cytoskeleton and endomembranes after freeze-substitution. J Cell Sci 1981; 48: 89–103.Google Scholar
  19. 19.
    Howard RJ & Aist JR. Cytoplasmic microtubule & fungal morphogenesis: ultrastructural effects of methyl benzimidazole-2-ylcarbamate determined by freeze-substitution of hyphal tip cells. J Cell Biol 1980; 87: 55–64.Google Scholar
  20. 20.
    Ito Y, Setoguti T, Nozawa Y, Sakuray S & Kitajima Y. Comparative studies on ultrastructure of the pigmented and albino hyphae of Microsporum cookei. Sabouraudia 1970; 8: 60–64.Google Scholar
  21. 21.
    Kuriyama R & Sakai H. Role of tubulin -SH groups in polymerization to microtubules. Functional -SH groups in tubulin for polymerization. J Biochem 1974; 76: 651–654.Google Scholar
  22. 22.
    Mares D. Antimicrobial activity of protoanemonin, a lactone from ranunculaceous plants. Mycopathologia 1987; 98: 133–140.Google Scholar
  23. 23.
    Misra SB & Dixit SN. Antifungal principle of Ranunculus sceleratus. Econ Bot 1980; 34: 362–367.Google Scholar
  24. 24.
    Mizuno K, Sek F, Perkin J, Wick S, Duniec J & Gunning B. Monoclonal antibodies specific to plant tubulin. Protoplasma 1985; 129: 100–108.Google Scholar
  25. 25.
    Roobol A, Gull K & Pogson C. Evidence that griseofulvin binds to a microtubule associated protein. FEBS Letters 1977; 75: 149–153.Google Scholar
  26. 26.
    Svensson SB. The effect of coumarin on root growth and root histology. Physiol Plant 1971; 24: 446–470.Google Scholar
  27. 27.
    Thiéry Y. Mise en évidence des polysaccharides sur coupes fines en microscopie électronique. J Microsc (Paris) 1967; 6: 987–1019.Google Scholar
  28. 28.
    Thimann KV & Bonner WD. Inhibition of plant growth by protoanemonin and coumarin and its prevention by BAL. Proc Natl Acad Sci (US) 1949; 35: 272–276.Google Scholar
  29. 29.
    Toshkov AS, Ivanov V, Sobeva U, Gancheva T, Pangelova S & Toneva V. Antibacterial, antiviral, antitoxic, and cytopathogenic properties of protoanemonin and anemonin. Antibiotiki 1961; 6: 918–920.Google Scholar
  30. 30.
    Valla G. Effects of griseofulvin on cytology, growth, mitosis and branching of Polyporus arcularius. Trans Brit Mycol Soc 1979; 73: 135–139.Google Scholar
  31. 31.
    Vannini GL, Fasulo MP & Dall'Olio G. Electron microscopic evidence of Phosfon D-induced alterations in the membranes of the dermatophytic fungus Microsporum cookei. Microbios 1979; 24: 41–49.Google Scholar
  32. 32.
    Weber K, Wehland J & Herzog W. Griseofulvin interacts with microtubules both in vivo and in vitro. J Mol Biol 1976; 102: 817–829.Google Scholar
  33. 33.
    Welker DL. Coumarin and antimicrotubule agents as probes of microtubule function in Dictyostelium discoideum. In Microtubules in microorganisms (P Cappuccinelli & NR Morris (Eds.), pp. 99–108. M Dekker Inc, 1982; New York/Basel.Google Scholar
  34. 34.
    Wunderlich F & Speth V. Antimitotic agents and macronuclear division of ciliates. IV. Reassembly of microtubules in macronuclei of Tetrahymena adapting to colchicine. Protoplasma 1970; 70: 139–152.Google Scholar

Copyright information

© Kluwer Academic Publishers 1989

Authors and Affiliations

  • Donatella Mares
    • 1
  1. 1.Istituto di Botanica dell'Università di FerraraFerraraItaly

Personalised recommendations