Archives of Microbiology

, Volume 103, Issue 1, pp 259–270 | Cite as

The regreening of nitrogen-deficient Chlorella fusca

II. Structural changes during synchronous regreening
  • N. A. Pyliotis
  • D. J. Goodchild
  • L. H. Grimme
Short Communications


Chlorella fusca, strain 211-15, cells degreened in a nitrogen-deficient mineral growth medium in the light for 4–6 weeks were regreened for up to 24 hrs in a nitrogen rich medium that leads to synchronous cell division at 24–26 hrs. Structural changes in the plastid membranes during the regreening period were observed by thin section and freeze-fracture electron microscopy. Nitrogen-deficient plastids were found to have non-appressed lamellae, prolamellar body-like membrane aggregations, and only 2 types of freeze-fracture face. At this time no photosynthetic oxygen evolution could be demonstrated. After 6 hrs regreening the plastid lamellae had fused to form bands of appressed lamellae and the four types of freeze-fracture face, described previously, were visible. At this time photosynthetic oxygen evolution could be demonstrated. After 24 hrs regreening the plastids had an appearance typical of normally grown Chlorella and had commenced to divide. Supporting evidence for these developmental stages is presented from isolated chloroplast particle fractions.

An unusual type of cell wall proliferation was observed in the nitrogen-deficient Chlorella cells that resulted in the laying down of several walls, each with a trilaminar component.

Key words

Chlorella N-Deficiency Structure Synchronous-Regreening Chloroplast Structure Freeze-Fracture Cell Wall Prolamellar Body 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anderson, J. M., Goodchild, D. J., Boardman, N. K.: Composition of the photosystems and chloroplast structure in extreme shade plants. Biochim. biophys. Acta (Amst) 325, 573–585 (1974)Google Scholar
  2. Atkinson, A. W., Gunning, B. E. S., John, P. C. L.: Sporopollenin in the cell wall of Chlorella and other algae: Ultrastructure, chemistry, and incorporation of 14C-acetate, studied in synchronous cultures. Planta (Berl.) 107, 1–32 (1972)Google Scholar
  3. Atkinson, A. W., John, P. C. L., Gunning, B. E. S.: The growth and division of the single mitochondrion and other organelles during the cell cycle of Chlorella, studied by quantitative stereology and three dimensional reconstruction. Protoplasma (Wien) 81, 77–109 (1974)Google Scholar
  4. Branton, D., Park, R. B.: Subunits in chloroplast lamellae. J. Ultrastruct. Res. 19, 283–303 (1967)Google Scholar
  5. Budd, T. W., Tjostem, J. L., Duysen, M. E.: Ultrastructure of Chlorella pyrenoidosa as affected by environmental changes. Amer. J. Bot. 56, 540–545 (1969)Google Scholar
  6. Goodenough, U. W., Staehelin, L. A.: Structural differentiation of stacked and unstacked chloroplast membranes. J. Cell Biol. 48, 594–619 (1971)Google Scholar
  7. Griffiths, D. A., Griffiths, D. J.: The fine structure of autotrophic and heterotrophic cells of Chlorella vulgaris (Emerson strain). Plant Cell Physiol. 10, 11–19 (1969)Google Scholar
  8. Grimme, L. H., Boardman, N. K.: Photochemical activities of a particle fraction P1 obtained from the green alga Chlorella fusca. Biochem. biophys. Res. Commun. 49, 1617–1623 (1972)Google Scholar
  9. Grimme, L. H., Porra, R. J.: The regreening of nitrogendeficient Chlorella fusca. I. The development of photosynthetic activity during the synchronous regreening of nitrogen-deficient Chlorella. Arch. Microbiol. 99, 173–179 (1974)Google Scholar
  10. Guérin-Dumartrait, E., Mihara, S., Moyse, A.: Composition de Chlorella pyrenoidosa, structure des cellules et de leurs lamelles chloroplastiques, en fonction de la carence en azote et de la levée de carence. Canad. J. Bot. 48, 1147–1154 (1970)Google Scholar
  11. Klyachko-Gurvich, G. L., Raikov, N. I., Raikova, A. P.: Reversibility of structural changes in Chlorella pyrenoidosa 82 cells induced by nitrogen deficiency. Sov. Plant Physiol. 15, 697–702 (1968)Google Scholar
  12. Klyachko-Gurvich, G. L., Rudova, T. S., Kuznetsova, G. P.: The role played by lipid fatty acids of Chlorella in recovery of cells after nitrogen starvation. Sov. Plant Physiol. 20, 92–99 (1973)Google Scholar
  13. Klyachko-Gurvich, G. L., Zhukova, T. S., Vladimirova, M. G., Kurnosova, T. A.: Comparative characterization of the growth and direction of biosynthesis of various strains of Chlorella under nitrogen deficient conditions. III. Synthesis of fatty acids. Sov. Plant Physiol. 16, 168–171 (1969)Google Scholar
  14. Mayer, F., Czygan, F.-C.: Änderungen der Ultrastrukturen in den Günalgen Ankistrodesmus braunii und Chlorella fusca var. rubescens bei Stickstoffmangel. Planta (Berl.) 86, 175–185 (1969)Google Scholar
  15. McLean, R. J.: Ultrastructure of Spongiochloris typica during senescence. J. Phycol. 4, 277–283 (1968)Google Scholar
  16. Mollenhauer, H. H.: Plastic embedding mixtures for use in electron microscopy. Stain Technol. 39, 111–114 (1964)Google Scholar
  17. Moor, H., Mühlethaler, K.: Fine structure in frozenetched yeast cells. J. Cell Biol. 17, 609–628 (1963)Google Scholar
  18. Nilshammar, M., Walles, B., Kylin, A.: The effect of calcium deficiency on the ultrastructure of the green alga Scenedesmus. Z. Pflanzenphysiol. 66, 197–205 (1972)Google Scholar
  19. Oh-Hama, T., Shihira-Ishikawa, I., Hase, E.: Development of photosynthetic activities during the process of chloroplast formation in Chlorella protothecoides. Plant Cell Physiol. 6, 743–760 (1965)Google Scholar
  20. Ojakian, G. K., Satir, P.: Particle movements in chloroplast membranes: quantitative measurements of membrane fluidity by the freeze-fracture technique. Proc. nat. Acad. Sci. (Wash.) 71, 2052–2056 (1974)Google Scholar
  21. Pohl, P., Passig, T., Wagner, H.: Über den Einfluß von anorganischem Stickstoff-Gehalt in der Nährlösung auf die Fettsäure-Biosynthese in Grünalgen. Phytochemistry 10, 1505–1513 (1971)Google Scholar
  22. Pulich, W. M., Ward, C. H.: Physiology and ultrastructure of an oxygen-resistant Chlorella mutant under heterotrophic conditions. Plant Physiol. 51, 337–344 (1973)Google Scholar
  23. Reger, B. J., Krauss, R. W.: The photosynthetic response to a shift in the chlorophyll a to chlorophyll b ratio of Chlorella. Plant Physiol. 46, 568–575 (1970)Google Scholar
  24. Sane, P. V., Goodchild, D. J., Park, R. B.: Characterization of chloroplast photosystems 1 and 2 separated by a non-detergent method. Biochim. biophys. Acta (Amst.) 216, 162–178 (1970)Google Scholar
  25. Semenenko, V. E., Vladimirova, M. G., Orleanskaya, O. B., Raikov, N. J., Kovanova, E. S.: Physiological characteristics of Chlorella sp. K at high extremal temperatures. II. Alteration in biosynthesis, ultrastructure, and activity of photosynthetic apparatus in Chlorella upon dissociation of cell functions by extreme temperature. Sov. Plant Physiol. 16, 172–181 (1969)Google Scholar
  26. Trukhin, N. V.: Growth and chemical composition of Chlorella pyrenoidosa in absence of nitrogen. Sov. Plant Physiol. 15, 703–709 (1968)Google Scholar
  27. Walne, P. L.: The effects of colchicine on cellular organization in Chlamydomonas. II. Ultrastructure. Amer. J. Bot. 54, 564–577 (1967)Google Scholar
  28. Wanka, F.: Ultrastructural changes during normal and colchicine-inhibited cell division of Chlorella. Protoplasma (Wien) 66, 105–130 (1968)Google Scholar
  29. Zhukova, T. S., Klyachko-Gurvich, G. L., Vladimirova, M. G., Kurnosova, T. A.: Comparative characterization of the growth and direction of biosynthesis of various strains of Chlorella under conditions of nitrogen starvation. II. Formation of carbohydrates and lipids. Sov. Plant Physiol. 16, 79–83 (1969)Google Scholar

Copyright information

© Springer-Verlag 1975

Authors and Affiliations

  • N. A. Pyliotis
    • 1
  • D. J. Goodchild
    • 1
  • L. H. Grimme
    • 2
  1. 1.Division of Plant IndustryCSIROCanberra
  2. 2.Botanisches Institut der Universität Erlangen-NürnbergErlangen

Personalised recommendations