, Volume 67, Issue 1, pp 59–64 | Cite as

Temperature induced atypical morphogenesis of the obligately psychrophilic yeast, Leucosporidium stokesii

  • Scott A. Silver
  • N. A. Sinclair


The obligately psychrophilic yeast, Leucosporidium stokesii increased in size, produced irregular wall growth and formed atypical buds when incubated within one to three degrees above 20 °C, the maximum growth temperature. Incubation of cells anaerobically or aerobically in the presence of 2,4-dinitrophenol at the elevated temperatures prevented the development of atypical buds. An investigation of subcellular morphology revealed that the atypical bud was anucleate, did not form a septum between bud and parent cell and produced numerous cytoplasmic vesicles. On shift-down to 15 °C, the optimum growth temperature, nuclear division, migration and septum formation resumed.


Migration Elevated Temperature Growth Temperature Optimum Growth Maximum Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cabib, E. 1975. Molecular aspects of yeast morphogenesis. Ann. Rev. Microbiol. 29: 191–214.Google Scholar
  2. 2.
    Cole, R.M., T.J. Popkin, R.J. Boylan & N.H. Mendelson, 1970. Ultrastructure of a temperature-sensitive rod-mutant of Bacillus subtilis. J. Bacteriol. 103: 793–810.Google Scholar
  3. 3.
    Fell, J.W., A.C. Statzell, I.L. Hunter & H.J. Phaff. 1969. Leucosporidium gen. n., the heterobasidiomycetous stage of several yeasts of the genus Candida. Antonie van Leeuwenhoek, 35: 433–462.Google Scholar
  4. 4.
    Ferroni, G.D. & W.E. Inniss. 1973. Thermally caused filament formation in the psychrophile Bacillus insolitus. Can. J. Microbiol. 19: 581–584.Google Scholar
  5. 5.
    Grant, D.W., N.A. Sinclair & C.H. Nash. 1968. Temperature sensitive glucose fermentation in the obligately psychrophilic yeast, Candida gelida. Can. J. Microbiol. 14: 1105–1110.Google Scholar
  6. 6.
    Gustafson, R.A., R.V. Hardcastle & P.J. Szaniszlo. 1975. Budding in the dimorphic fungus Cladosporium werneckii. Mycol. 67: 942–951.Google Scholar
  7. 7.
    Hagler, A.N. & M.J. Lewis. 1974. Effect of glucose on thermal injury of yeast that may define the maximum temperature of growth. J. Gen. Microbiol. 80: 101–109.Google Scholar
  8. 8.
    Hartwell, L.H. 1973. Genetic control of the cell division cycle in yeast. II. Genes controlling DNA replication and its initiation. J. Mol. Biol. 59: 183–189.Google Scholar
  9. 9.
    Hartwell, L.H. 1973. Three additional genes required for deoxyribonucleic acid synthesis in Saccharomyces cerevisiae. J. Bacteriol. 115: 966–971.Google Scholar
  10. 10.
    Hartwell, L.H., J. Culotti & B. Reid. 1970. Genetic control of the cell division cycle in yeast. I. Detection of mutants. Proc. Nat. Acad. Sci., U.S.A. 66: 352–359.Google Scholar
  11. 11.
    Hartwell, L.H., J. Culotti, J.R. Pringle & B.J. Reid. 1974. Genetic control of the cell division cycle in yeast. Science 183: 46–51.Google Scholar
  12. 12.
    Hartwell, L.H., R.K. Mortimer, J. Culotti & M. Culotti. 1973. Genetic control of the cell division in yeasts. V. Genetic analysis of cdc mutants. Genetics 74: 267–271.Google Scholar
  13. 13.
    Heinen, W. 1971. Inhibition of electron transport and oxidative phosphorylation, pp. 383–393. In J.R. Norris & D.W. Ribbons (eds.) Methods in Microbiology, Vol. 6a, Academic Press, Inc., New York.Google Scholar
  14. 14.
    Hodgman, C.D., R.C. Weast & S.M. Selby. 1958. Handbook of Chemistry and Physics, 39th edition. Cleveland, Ohio, Chemical Rubber Publishing Co., p. 317.Google Scholar
  15. 15.
    Inniss, W.E. 1975. Interaction of temperature and psychrophilic microorganisms. Ann. Rev. Microbiol. 29: 445–465.Google Scholar
  16. 16.
    Larkin, J.M. & J.L. Stokes. 1968. Growth of psychrophilic microorganisms at subzero temperatures. Can. J. Microbiol. 14: 97–101.Google Scholar
  17. 17.
    Mendelson, N.H. & J.D. Gross. 1967. Characterization of a. temperature-sensitive mutant of Bacillus subtilis defective in deoxyribonucleic acid replication. J. Bacteriol. 94: 1603–1608.Google Scholar
  18. 18.
    Muller, I. 1971. Experiments on aging in single cells of Saccharomyces cerevisiae. Arch. Microbiol. 77: 20–25.Google Scholar
  19. 19.
    Nash, C.H. & D.W. Grant. 1969. Thermal stability of ribosomes from a psychrophilic and a mesophilic yeast. Can. J. Microbiol. 15: 1116–1118.Google Scholar
  20. 20.
    Nickerson, W.J. & G. Falcone. 1959. Function of protein disulfide reductase in cellular division of yeasts. in Sulfur in Proteins, Benesch Rheinhold, ed., pp. 409–424. Academic Press, New York.Google Scholar
  21. 21.
    Silver, S.A., I. Yall & N.A. Sinclair. 1977. A molecular basis for the maximum growth temperature of an obligately psychrophilic yeast, Leucosporidium stokesii. J. Bacteriol. 132: 676–680.Google Scholar
  22. 22.
    Sinclair, N.A. 1978. Role of oxygen in the induction of fermentation in the obligately psychrophilic yeast, Leucosporidium stokesii. Can. J. Microbiol. 24: 31–35.Google Scholar
  23. 23.
    Sinclair, N.A. & J.L. Stokes. 1965. Obligately psychrophilic yeasts from the polar regions. Can. J. Microbiol. 11: 259–269.Google Scholar
  24. 24.
    Tang, S.L. & D.H Howard. 1973. Metabolism, macromolecular synthesis, and nuclear behavior of Cryptococcus albidus at 37C. J. Bacteriol. 115: 574–581.Google Scholar
  25. 25.
    Ward, E.W.B. 1968. Temperature-induced changes in hyphal morphology of the psychrophile Sclerotina borealis. Can. J. Microbiol. 46: 524–525.Google Scholar

Copyright information

© Kluwer Academic Publishers 1979

Authors and Affiliations

  • Scott A. Silver
    • 1
    • 2
  • N. A. Sinclair
    • 1
    • 2
  1. 1.Medical Biology DivisionOklahoma College of Osteopathic Medicine and SurgeryTulsa
  2. 2.Department of Microbiology, Pharmacy-Microbiology BuildingUniversity of ArizonaTucson

Personalised recommendations