Advertisement

Molecular and General Genetics MGG

, Volume 101, Issue 4, pp 368–375 | Cite as

Stimulation of the differential rate of β-galactosidase synthesis in E. coli by trimethoprim

  • F. Lacroute
  • G.S. Stent
Article

Summary

It was found that partial inhibition of peptide chain initiation by trimethoprim causes a significant increase in the differential rate of β-galactosidase in cultures of E. coli growing in the presence of suboptimal concentrations of a galactoside inducer. This stimulation is not produced by inhibitors of peptide chain growth, such as chloramphenicol and puromycin. Trimethoprim, furthermore, does not cause a significant increase in the differential rate of β-galactosidase synthesis in E. coli cultures (a) of i+ genotype which are fully induced, (b) of fully constitutive i- genotype, (c) of partially constitutive oc genotype, or (d) of noninducible i s genotype. These findings are compatible with the idea that the differential rate of β-galactosidase synthesis is regulated by means of an inducer-dependent growth period of a “regulatory” polypeptide.

Keywords

Peptide Polypeptide Chloramphenicol Growth Period Trimethoprim 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, E. H.: Growth requirements of virus-resistant mutants of Escherichia coli strain B. Proc. nat. Acad. Sci. (Wash.) 32, 120 (1946)Google Scholar
  2. Capecchi, M. R.: Initiation of E. coli proteins. Proc. nat. Acad. Sci. (Wash.) 55, 1517 (1966).Google Scholar
  3. Cline, A. L., and R. M. Bock: Translational control of gene expression. Cold Spr. Harb. Symp. quant. Biol. 31, 321 (1966).Google Scholar
  4. Craven, G. R., E. Steers, and C. B. Anfinsen: Purification composition, and molecular weight of the β-galactosidase of Escherichia coli K12. J. biol. Chem. 240, 2468 (1965).Google Scholar
  5. Eisenstadt, J., and P. Lengyel: Formylmethionyl-tRNA dependence of amino acid incorporation in extracts of trimethoprim-treated Escherichia coli. Science 154, 524 (1966).Google Scholar
  6. Gilbert, W., and B. Müller-Hill: The lac operator is DNA. Proc. nat. Acad. Sci. (Wash.) 58, 2415 (1967).Google Scholar
  7. Gruber, M., and R. N. Campagne: Regulation of protein synthesis: an alternative to the repressor-operator hypothesis. Proc. kon ned. Akad. Wet., Ser. C 68, 270 (1965).Google Scholar
  8. Ippen, K., J. H. Miller, J. Scaihe, and J. Beckwith: New controlling element in the lac operon of E. coli. Nature (Lond.) 217, 825 (1968).Google Scholar
  9. Jacob, F., and J. Monod: Genetic regulatory mechanisms in the synthesis of proteins. J. molec. Biol. 3, 318 (1961).Google Scholar
  10. Kolber, A. R., and W. D. Stein: Identification of a transport “carrier” system: Isolation of the permease expression of the lac operon of Escherichia coli. Nature (Lond.). 209, 691, (1966).Google Scholar
  11. Lacroute, F., and G. S. Stent: Peptide chain growth of β-galactosidase in E. coli. J. molec. Biol. (in press).Google Scholar
  12. Maaløe, O. and N. O. Kjeldgaard: Control of macromolecular synthesis. New York: W. A. Benjamin.Google Scholar
  13. Paigen, K.: Changes in the inducibility of galactokinase and β-galactosidase during inhibition of growth in Escherichia coli. Biochim. biophys. Acta (Amst.) 77, 318 (1963).Google Scholar
  14. Pardee, A. B., F. Jacob, and J. Monod: The genetic control and cytoplasmic expression of “inducibility” in the synthesis of β-galactosidase by E. coli. J. molec. Biol. 1, 165 (1959).Google Scholar
  15. Sypherd, P. S., N. Strauss, and H. P. Treffers: The preferential inhibition by chloramphenicol of induced enzyme synthesis. Biochem. biophys. Res. Commun. 7, 477 (1962).Google Scholar

Copyright information

© Springer-Verlag 1968

Authors and Affiliations

  • F. Lacroute
    • 1
    • 2
    • 3
  • G.S. Stent
    • 1
    • 2
  1. 1.Virus LaboratoryUniversity of CaliforniaBerkeleyU.S.A.
  2. 2.Department of Molecular BiologyUniversity of CaliforniaBerkeleyU.S.A.
  3. 3.Laboratoire de génétique physiologiqueInstitut de BotaniqueStrasbourgFrance

Personalised recommendations